
General Framework for Intelligent Unstructured Mesh Generation

by

Eric Daoust

Thesis submitted in partial fulfilment
of the requirements for the degree of

Master of Science (MSc) in Computational Sciences

School of Graduates Studies
Laurentian University

Sudbury, Ontario

c© Eric Daoust, August 2011

GENERAL FRAMEWORK FOR
INTELLIGENT UNSTRUCTURED MESH

GENERATION

by Eric Daoust

a thesis submitted to the School of Graduate Studies of
Laurentian University in partial fulfilment of the require-
ments for the degree of

Master of Science (MSc) in Computational Sciences
c© 2011

Permission has been granted to: a) LAURENTIAN UNI-
VERSITY LIBRARIES to lend or sell copies of this dis-
sertation in paper, microform or electronic formats, and
b) LIBRARY AND ARCHIVES CANADA to reproduce,
lend, distribute, or sell copies of this thesis anywhere in
the world in microform, paper or electronic formats and

to authorise or procure the reproduction, loan, distribu-
tion or sale of copies of this thesis anywhere in the world
in microform, paper or electronic formats.

The author reserves other publication rights, and neither
the thesis nor extensive extracts for it may be printed or
otherwise reproduced without the author’s written per-
mission.

GENERAL FRAMEWORK FOR INTELLIGENT UNSTRUCTURED
MESH GENERATION

by Eric Daoust

By virtue of submitting this document electronically, the author certifies that this is a
true electronic equivalent of the copy of the thesis approved by Laurentian University
for the award of the degree. No alteration of the content has occurred and if there are
any minor variations in formatting, they are as a result of the conversion to Adobe
Acrobat format (or similar software application).

Examination Committee Members:

1. Dr. Sabine Montaut, President

2. Dr. Julien Dompierre, Supervisor

3. Dr. Nicolas Robidoux, Co-supervisor

4. Dr. Vincent François, External Examiner

5. Dr. Abdellatif Serghini, Examiner

To my parents who support me in all my projects, and for this thesis, in particular.

Everything that can be counted does not necessarily count;
everything that counts cannot necessarily be counted.

Albert Einstein

iv

Abstract

Delaunay mesh generators are fully automatic, fast and can handle complex ge-

ometries. However, users have very little control on the final mesh quality. The mesh

size is only given manually on boundary edges and faces and then graded inside. De-

launay meshes are nearly uniform far from boundaries. A better mesh would take into

account the distance to the walls, the curvature of the walls, the local thickness of the

domain, the proximity of some discontinuities such as corners, the trailing edge, etc.

These geometric characteristics of the computational domain should drive the mesh

generation. The mesh should be finer where local thickness is small. It should be

stretched and aligned with the walls, the tangential size being a function of the wall

curvatures and the normal size being a function of the distance to the wall. What is

called a good mesh also depends on the domain of application such as computational

fluid dynamics, heat transfer, stress analysis, electromagnetism, etc. Good meshes

for an application always depend on the geometric characteristics of the domain, but

in a different manner.

The “mesh sizing problem” is the problem of automatic unstructured mesh gener-

ation according to geometric characteristics of the computational domain and depend-

ing on the domain of application. The objective of this research proposal is to reuse

and extend ongoing research activities in the field on anisotropic mesh adaptation to

create a general framework for the mesh sizing problem.

The now typical way to build a mesh with local size, stretching and orientation

is by defining a Riemannian metric at any point of the domain and by adapting a

mesh according to this Riemannian metric. The Riemannian metric defines a space

v

transformation that specifies the local size, stretching and orientation of the mesh to

be build. To address the mesh sizing problem, one has to 1) compute geometric char-

acteristics of the computational domain, 2) transform these geometric characteristics

into a Riemannian metric, 3) store these Riemannian metric on a discrete support for

use in an adaptive mesh generator.

These three steps are usually solved using a regular grid or a binary tree that over-

laps the computational domain. However, such a grid is not linked to the boundaries

of the domain and may not be fine enough where needed. The proposed approach

uses an unstructured mesh of the domain. As the mesh is a discretization of the

domain, it includes boundary points. Geometric characteristics will be computed on

the mesh, starting from the boundaries and sweeping the whole mesh with neighbour-

hood algorithms. Problem 2) is solved by introducing parametrized templates that

encapsulates the know how of the user. These parametrized templates contain rules

that transform geometric characteristics into a Riemannian metric according to the

domain of application. Problem 3) is solved by using anisotropic mesh adaptation.

The Riemannian metric computed by steps 1) and 2) may be complex, with strong

variations and directionality. A good mesh to represent a complex solution field,

accurate enough but not too fine, is the mesh adapted to this field. So, the steps

1), 2) and 3) are done iteratively with a fourth step of anisotropic mesh adaptation.

This process ends up with two outputs for the price of one: the accurate Riemannian

metric of the geometric characteristics of the domain, and the mesh itself adapted to

this Riemannian metric.

Possible applications of this research include two-dimensional shape optimization.

The optimizer tests different geometries that must be automatically and intelligently

meshed such that a numerical simulation can be accurately performed. An example

in three-dimensional is the automatic meshing of complex geometries with thin parts

as in the molding process simulation. The mesh must be fine in the thickness direc-

tion and coarse in the tangential directions. The overall benefit expected from this

vi

research proposal is improved automation and more reliable numerical simulations by

producing automatic intelligent unstructured mesh and by reducing the engineering

cost associated with the meshing process.

vii

Acknowledgements

First, I would like to express my deep gratitude towards my thesis supervisor Dr.

Julien Dompierre. He is the one that defined the subject of this thesis, obtained a

grant from NSERC to finance the research and supervised five summer students who

completed preliminary work for this thesis. I would like to thank him for having

confidence in me to undertake the primary portion of this research which finally

constitutes my masters thesis. During the past two years he has been very helpful

in terms of financial support, in-person meetings, programming efforts, collaborative

work with the support of SVN and by arranging two summer work terms for me at

École Polytechnique de Montréal. With all of this support I was able to complete

my masters degree. More so than a diploma, I was able to acquire knowledge in

a particular domain and I had a great experience working both collaboratively and

in an industrial setting. Very few students are lucky enough to have been so well

surrounded and supported in order to progress so much.

I would next like to thank the members of the Department of Mathematics and

Computer Science at Laurentian University where I am registered. The knowledge

I obtained during my Bachelor of Computer Science gave me the support necessary

to overcome the obstacles of a masters degree. In particular, I would like to thank

Dr. Nicolas Robidoux who has always supported me. He was my supervisor for my

undergraduate thesis and was also my mentor for my Google Summer of Code project

in 2009, both of which helped inspire me to continue doing research. I would also like

to thank Dr. Kalpdrum Passi, who has been the Department chair during the last

five years, for allowing me the opportunity to pursue higher education at Laurentian

viii

University and also for the co-op program. Through four summer co-op placements,

I was implicated in the work force as well as in research, which helped motivate me

to progress farther than an ordinary student.

I would also like to thank the members of my thesis jury for accepting to review

my thesis. This includes Dr. To Dr. Sabine Montaut, president of the jury, Dr.

Nicolas Robidoux and Dr. Abdellatif Serghini from my MSc supervising committee,

and especially the external examiner, Dr. Vincent François from the Département de

génie mécanique de l’Université du Québec à Trois-Rivières, who agreed diligently

to review my thesis. Their precious comments permitted me to greatly improve the

quality of my work.

I spent the months of June 2010 and May 2011 working with the research team

of Dr. François Guibault of the Deépartement de génie informatique et génie logiciel

at École Polytechnique de Montréal. I would like to express my gratitude for hosting

me and accepting me among his team. I would also like to thank the members of his

team, notably Dr. Ying Zhang and M.Sc. Jean-François Dubé of École Polytecnique

as well as Dr. Christophe Devals of Andritz in Pointe-Claire, a suburb of Montréal.

This experience added a real-life context to the research that would not have been

available otherwise.

I would also like to thank Dr. Paul Labbé of Institut de recherche en Électricité du

Québec, in Varennes on the south shore of Montréal, for his invitation to present my

work to his colleagues. Their receptivity, their industrial experience and their many

helpful questions were very fruitful for this research.

ix

Table of Contents

Abstract v

Acknowledgements viii

Table of Contents x

List of Figures xv

List of Algorithms xx

Preface xxi

Abbreviations xxiv

1 Introduction 1

1.1 The big picture . 1

1.2 Mesh generation problem . 3

1.3 Problem statement . 8

2 General framework for intelligent unstructured mesh generation 10

2.1 Review of the literature . 10

2.1.1 What adding more user control in mesh generation means? . . 10

2.1.2 Where to compute? . 12

2.1.3 What would be the output . 15

2.1.4 Computation of geometric characteristics 17

x

2.1.5 Methods to compute geometric characteristics 19

2.1.6 Execution control given to user 20

2.1.7 Direct versus iterative execution 21

2.1.8 Scope . 22

2.2 SmartMesh, a new approach of the mesh sizing problem 23

2.2.1 Data structure . 23

2.2.2 Use of metrics . 24

2.2.3 Multi-domain capability . 24

2.2.4 Perform calculations on mesh 24

2.2.5 Use of neighbour propagation 25

2.2.6 Iterative approach . 25

2.2.7 Specifications on the geometric model 26

2.2.8 Separate execution parameters from mesh structure and algo-

rithms . 26

2.2.9 Full control to user . 27

2.2.10 Generalized algorithms to be used 27

3 Riemannian metric 31

3.1 Metrics . 31

3.1.1 Distance . 31

3.1.2 Metric, a generalization of distance 32

3.1.3 Metric tensors . 33

3.1.4 Size tensors . 34

3.1.5 Conversion from size tensor to metric tensor 34

3.1.6 Conversion from metric tensor to size tensor 35

3.1.7 Construction of size tensor . 35

3.2 Tensor intersection . 36

3.2.1 Alauzet metric tensor intersection 36

3.2.2 Robust size metric intersection 37

xi

3.3 Functions . 39

3.3.1 Distance function . 40

3.3.2 Curvature function . 40

3.4 Metric orientation between two boundaries 41

3.5 Object Oriented Remeshing Toolkit (OORT) 41

4 SmartMesh library 43

4.1 Philosophy . 43

4.2 Working environment . 43

4.2.1 Programming . 44

4.2.2 Visualization . 44

4.2.3 Documentation . 44

4.2.4 Logging . 45

4.3 Object-oriented structure . 45

4.3.1 Mesh representation . 45

4.3.2 Topological model representation 47

4.3.3 Mutual knowledge between mesh and topological model 48

4.3.4 Size tensor representation . 49

4.3.5 Functions . 50

4.3.6 Algorithm representation . 51

4.3.7 Boundary algorithm . 65

5 SmartMesh program 76

5.1 Technical description . 76

5.2 Philosophy . 77

5.3 Configuration . 77

5.3.1 XML . 78

5.3.2 libconfig . 78

5.3.3 Advantages of configuration file 80

xii

5.3.4 Preprocessor . 80

5.4 Execution of SmartMesh library . 80

5.4.1 SmartMesh input data . 80

5.4.2 Layer . 83

5.5 SmartMesh script . 84

5.5.1 Shell script usage . 85

5.5.2 Command-line output . 86

5.5.3 SmartMesh and OORT working together 88

5.5.4 Logic of SmartMesh script execution 88

5.5.5 Evolution of the input mesh 89

6 Testing and results 93

6.1 U-duct . 93

6.2 Airplane wings . 95

6.2.1 AGARD test cases on a NACA0012 airfoil 96

6.2.2 AGARD01 . 97

6.2.3 AGARD02 . 100

6.2.4 AGARD03 . 102

6.2.5 AGARD04 . 105

6.2.6 AGARD05 . 105

6.2.7 The GAMM A7 test case on a NACA0012 airfoil 108

6.3 Hydraulic turbine . 111

6.3.1 Simple distributor test cases 111

6.3.2 Industrial testing . 117

7 Conclusions 130

7.1 General conclusion . 130

7.2 Analysis of the results . 130

7.2.1 Testing results . 130

xiii

7.2.2 Observations . 132

7.3 Contributions . 134

7.3.1 General framework for intelligent unstructured mesh generation 134

7.3.2 Iterative approach . 134

7.3.3 Use the current mesh for all purposes 135

7.3.4 Independence of a CAD system 136

7.3.5 Efficient geometric calculations done by neighbour propagation 137

7.4 Future work . 137

7.4.1 Smoothing algorithm . 137

7.4.2 Function types . 138

7.4.3 Minimum and maximum size 138

7.4.4 Curvature at topological vertex 139

7.4.5 Explore additional methods to compute normals and curvature 140

7.4.6 Implementation in three dimensions 140

A SmartMesh user’s manual 142

A.1 SmartMesh libconfig syntax . 142

A.1.1 Regions . 142

A.1.2 Distance functions . 142

A.1.3 Curvature-to-size functions . 143

A.1.4 Projection functions . 143

A.1.5 Algorithms . 144

A.1.6 Configuration file example . 145

B Metric intersection 150

C Javadoc documentation of SmartMesh 154

Bibliography 155

xiv

List of Figures

1.1 Accurate solution and corresponding mesh for the numerical simulation

of airflow around a NACA0012 airfoil. 4

1.2 Inappropriate triangular mesh automatically generated by the software

Tri△ngle and corresponding inaccurate solution. 6

1.3 Complex hand-made block decomposition of the computational do-

main. Each block is then filled with a structured grid. Pictures are

from the website of Gridgen (www.pointwise.com/gridgen). 7

2.1 Various circles representing isotropic size of triangles. 16

2.2 Various ellipses representing anisotropic size of triangles. 17

2.3 Example of breadth-first search on a triangular mesh, which is a planar

graph. 30

3.1 EM1
and EM2

in regular space. 37

3.2 EM′

1
(a unit circle) and EM′

2
in T space. 38

3.3 EM′

1∩2
in T space. 39

3.4 EM1∩2
in regular space. 39

3.5 Curvature of a polyline at vertex P . 41

4.1 A curve at the point P is approximated by the osculating circle of

radius r. The length h of the segment that has a maximal error δ with

the circle. 52

4.2 Example of uniform mesh of size s. 53

xv

4.3 Example output for distance to vertex algorithm. 54

4.4 Distance between a vertex V and an edge AB. V ′ is the perpendicular

projection of V on the line spanned by the edge. If the projection V ′

is outside the edge, the closest point is the corresponding end of the

edge. 56

4.5 Example of a dense mesh stretched and aligned between two nearby

boundaries. 57

4.6 Orientation of a size tensor based on its proximity to two boundaries. 61

4.7 Example of a mesh produced with the distance to imaginary polyline

algorithm. 63

4.8 Example of a mesh created using the distance to boundary algorithm. 66

4.9 Approximation of the curvature of a discretized curve by computing

the circle that passes through three points. 69

4.10 Example of a mesh produced by the curvature of boundary algorithm. 71

4.11 Two curves having a different orientation meeting at a common topo-

logical vertex. 72

5.1 Example of configuration file using the libconfig format. 79

5.2 Example of mesh with and without an added structured layer of quadri-

laterals. 84

5.3 Initial mesh and corresponding adapted mesh following SmartMesh

program execution. 85

5.4 Initial mesh. 89

5.5 Step 1 in the SmartMesh script execution. 90

5.6 Step 2 in the SmartMesh script execution. 90

5.7 Step 3 in the SmartMesh script execution. 91

5.8 Step 4 in the SmartMesh script execution. 91

5.9 Step 5 in the SmartMesh script execution (final mesh). 92

xvi

6.1 Geometry of U-duct problem. 94

6.2 Different meshes for the same U-duct problem. 94

6.3 Additional precision where curvature is strong (SmartMesh output). 95

6.4 Test case AGARD01. Generic Delaunay mesh generated by Tri△ngle

and Mach contours of the solution computed with NSC2kε. 98

6.5 Test case AGARD01. Adapted mesh generated by OORT and Mach

contours of the solution computed with NSC2kε. 98

6.6 Test case AGARD01. Mesh generated by SmartMesh and Mach con-

tours of the solution computed with NSC2kε. 99

6.7 Test case AGARD01. Pressure coefficient Cp on the wall of the airfoil

for the three different meshes. 100

6.8 Test case AGARD02. At the top, mesh generated by OORT and Mach

contours of the solution computed with NSC2kε. Same thing at the

bottom, but mesh generated with SmartMesh. 101

6.9 Test case AGARD02. Pressure coefficient Cp on the wall of the airfoil

with meshes produced by OORT and SmartMesh. 102

6.10 Test case AGARD03. From left to right. The mesh obtained with mesh

adaptation with OORT and the mesh handcrafted with SmartMesh.

Then the solution computed with NSC2kε on the corresponding meshes.103

6.11 Test case AGARD03. At the top, mesh generated by OORT and Mach

contours of the solution computed with NSC2kε. Same thing at the

bottom, but mesh generated with SmartMesh. 104

6.12 Test case AGARD04. From left to right. The mesh obtained with mesh

adaptation with OORT and the mesh handcrafted with SmartMesh.

Then the solution computed with NSC2kε on the corresponding meshes.106

6.13 Test case AGARD05. From left to right. The mesh obtained with mesh

adaptation with OORT and the mesh handcrafted with SmartMesh.

Then the solution computed with NSC2kε on the corresponding meshes.107

xvii

6.14 Test case GAMM A7. At the top, general view of the handcrafted mesh

obtained with SmartMesh and the corresponding unsteady solution.

Close view around the wing at the bottom. 109

6.15 Geometric domain and mesh for the first hydraulic turbine distributor. 113

6.16 Effect of curvature of border algorithm on the leading edge of the guide

vane. 113

6.17 Geometric domain and mesh for the second hydraulic turbine distributor.114

6.18 Effect of distance between two borders algorithm on the second dis-

tributor. 115

6.19 Geometric domain and mesh for the third hydraulic turbine distributor.116

6.20 Effect of distance between two borders algorithm on third distributor. 117

6.21 Mesh generated by H2OMESH with a structured layer and isocontours

of the velocity field computed by CFX. 118

6.22 Generic Delaunay mesh generated by Tri△ngle and isocontours of the

velocity field computed by CFX. 120

6.23 Mesh generated by SmartMesh with curved boundaries and added skin

around blades (left) and isocontours of the velocity field computed by

CFX (right). 121

6.24 Mesh generated by SmartMesh with curved boundaries and no added

skin around blades (left) and isocontours of the velocity field computed

by CFX (right). 123

6.25 Mesh generated by SmartMesh with piecewise linear periodic bound-

aries and added skin around blades (left) and isocontours of the velocity

field computed by CFX (right). 125

6.26 Mesh generated by SmartMesh with piecewise linear periodic bound-

aries and no added skin around blades (left) and isocontours of the

velocity field computed by CFX (right). 126

6.27 Simple Delaunay mesh and isocontours between distributor blades. . 128

xviii

6.28 Adapted mesh with no structured skin and isocontours between dis-

tributor blades. 128

6.29 Adapted mesh with structured skin and isocontours between distribu-

tor blades. 129

xix

List of Algorithms

4.1 Uniform Algorithm. Input: A topological entity E and the isotropic

size value s. 53

4.2 Distance to vertex algorithm. Input: A topological vertex E and

a distance function with its parameters, amongst them dmax. 55

4.3 Distance between two boundaries algorithm. Input: Two topo-

logical edges E1 and E2 and two size functions with their parameters,

amongst them dmax. 57

4.4 Distance to imaginary polyline algorithm. Inputs: the polyline

P , a topological face E and three size functions with their parameters,

amongst them dmax. 62

4.5 Distance to boundary algorithm. Input: The topological edge E

and two distance functions with their parameters, amongst them dmax. 67

4.6 Curvature of boundary algorithm. Input: A topological edge E

and three size functions with their parameters, amongst them dmax. . 73

5.1 SmartMesh program. general layout of the program. 81

5.2 BuildEdges Algorithm. The input is the list of mesh triangles, each

of them with their three pointers to vertices. 82

5.3 SmartMesh.sh. Input: a geometric model (with topological and ge-

ometrical parts) and an initial mesh that discretizes the geometric

model. Output: an unstructured triangular intelligent mesh. 88

xx

Preface

The tip of the iceberg is the only part that we can see. However, there is a much

larger portion which cannot be seen. Likewise, this document that is in your hands

or displayed on a screen is not my masters thesis, but only the visible portion of the

work completed. Underneath this document there is something much greater hidden.

This thesis took place at Laurentian University in Sudbury, Ontario, Canada.

The duration of the program from start to finish was approximately two years. The

following four courses were completed during this program:

• CPSC 5006: Matrix Computations

• CPSC 5106: Algorithm Design and Analysis

• CPSC 5216: High-Performance Scientific Computing

• CPSC 5307: Search and Discrete Optimization

A total of ten seminars related to mathematics and computer science were at-

tended at Laurentian University as part of a mandatory condition to complete the

program. As well, the CRM-GIREF conference was attended in Québec on May 25 to

27, 2010. This was a series of presentations covering all topics in the ongoing research

in mesh generation and adaptation.

In September 2010, I contributed to preparing a seminar for the Department

of Mathematics and Computer Science at Laurentian University. In May 2011, I

contributed to preparing and presenting a seminar at L’Institut de Recherche en

Électricité du Québec (IREQ).

xxi

During the thesis there were two work placements at École Polytechnique in

Montréal. The first placement took place in June 2010 and lasted approximately

four weeks. The goal of this placement was to get educated by experts in the field of

mesh adaptation.

The second placement took place in May 2011 with the goal of integrating SmartMesh

into an industrial optimization algorithm in order to obtain results for comparison.

Some bursaries were obtained to help support the research during the two years

in this program:

• My adviser provides funds form his Natural Sciences and Engineering Research

Council of Canada (NSERC) Discory Grant for salaries and travel expenses.

• The Ontario Graduate Scholarship (OGS) was obtained following application

for the 2010–11 school year.

• The Graduate Teaching Assistant (GTA) bursary was obtained for both years

of enrollment in the program. In exchange for the bursary, the student must

complete 5–10 hours of teaching assistant tasks (marking assignments, preparing

assignments, substitute teaching, etc.) per week.

• The Laurentian Summer Fellowship was obtained for the summer of 2010 for

continued research during the summer months.

Some additional works were completed during this thesis:

• The document [15] summarizing a summer project by Karèle Fontaine in 2010

was proofread.

• A test case was documented where a suspected error in the “Alauzet” intersec-

tion method ([3, 4, 6]) coded in Maple. As part of the first work placement

at École Polytechnique, the same test case was set up in the Riemann library,

which has access to the same method for metric intersection. The test gave

xxii

the same result in both cases, which validates that the intersection method in

Maple is in fact correct.

• As follow-up to the first work placement, it was requested that a new intersection

method from [28] be coded for Riemann. This was done with several test cases

to validate that the code is correct.

xxiii

Abbreviations

The abbreviations used in this thesis are explained in greater detail in this section.

Concepts

1. CAD (Computer-Aided Design) also known as CADD (computer-aided design

and drafting) is the use of computer technology for the process of design. The

design consists of a geometric model of an object. The geometric model can

be broken into two parts: the geometric part and the topological part. The

geometric part defines the curves and their position while the topological part

defines the relations between the various entities. SmartMesh uses pirate as

CAD library.

2. CFD (computational fluid dynamics) is a branch of fluid mechanics that uses

numerical methods and algorithms to solve and analyze problems that involve

fluid flows. Computers are used to perform the calculations required to sim-

ulate the interaction of liquids and gases with surfaces defined by boundary

conditions.1

Environment of development

1. SmartMesh is the name of the software that implements the ideas developed in

this thesis. SmartMesh is a library (libSmartMesh.a), a program (SmartMesh.exe)

1From en.wikipedia.org/wiki/CFD retrieved on August 26, 2011.

xxiv

and a bash script (SmartMesh.sh).

2. OORT (Object-Oriented Remeshing Toolkit) is a program that modifies an

input mesh based on a supplied field of metric tensors. It was developed mainly

by Julien Dompierre and Paul Labbé from 1997 to 2003 at CERCA (Centre de

recherche en calcul appliquée) in Montréal.

3. XtremeMetrics is a project developed in Maple that stores and manipulates

(intersection and unions) various types of metric tensors. It was mainly devel-

oped by Shawn McKenzie, under the supervision of Julien Dompierre, in 2007

at Laurentian University.

4. Layer is a program that adds a structured skin around curves in two dimensions

or surfaces in three dimensions. In two dimensions, the skin is composed of

quadrilaterals that can be divided into triangles. In three dimensions, the skin

is composed of prisms or hexahedra that can be divided into prisms. It was

mainly developed by Ovidiu Manole from 2000 to 2002 at CERCA (Centre de

recherche en calcul appliquée) in Montréal.

5. Tri△ngle is an open source program that generates Delaunay meshes in two

dimensions. This software was done by Jonathan Shewchuk, associate professor

in computer science at University of California at Berkeley.

6. NSC2kε (Navier-Stokes Compressible en 2D avec modèle de turbulence k − ε)

is a finite-volume Galerkin program computing two-dimensional and axisym-

metric flows on unstructured triangular meshes. It was developed by Bijan

Mohammadi at INRIA (Institut National de Recherche en Informatique et Au-

tomatique), France, from 1992 to 1994.

7. CFX is a commercial Computational Fluid Dynamics (CFD) program, used to

simulate fluid flow in a variety of applications. The ANSYS CFX product al-

lows engineers to test systems in a virtual environment. The scalable program

xxv

has been applied to the simulation of water flowing past ship hulls, gas turbine

engines (including the compressors, combustion chamber, turbines and after-

burners), aircraft aerodynamics, pumps, fans, HVAC systems, mixing vessels,

hydrocyclones, vacuum cleaners, and more.2

8. Pirate is an in-house CAD system. It is a C++ library that reads, stores,

manipulates and writes all the data used in numerical simulations. This data

includes a computer-aided design with the topological model and the geometric

model, two- and three-dimensional meshes, and solutions composed of scalars,

vectors and tensors. It was developed mainly by François Guibault and Paul

Labbé at École Polytechnique de Montréal from 1993 to until now.

Support software

1. The C preprocessor (cpp) is the preprocessor for the C programming language.

In many C implementations, it is a separate program invoked by the compiler as

the first part of translation. The preprocessor handles directives for source file

inclusion (#include), macro definitions (#define), and conditional inclusion

(#if). The language of preprocessor directives is agnostic to the grammar of C,

so the C preprocessor can also be used independently to process other types of

files.3

2. HTML, which stands for HyperText Markup Language, is the predominant

markup language for web pages. HTML elements are the basic building-blocks

of web pages.4

3. The Standard Template Library (STL) is a C++ software library which later

evolved into the C++ Standard Library. It provides four components called

2From en.wikipedia.org/wiki/CFX retrieved on August 23, 2011.

3From en.wikipedia.org/wiki/C preprocessor retrieved on August 23, 2011.

4From en.wikipedia.org/wiki/Html retrieved on August 22, 2011.

xxvi

algorithms, containers, functors, and iterators.5

4. Apache Subversion (often abbreviated SVN, after the command name svn) is

a software versioning and a revision control system founded and sponsored in

2000 by CollabNet Inc. Developers use Subversion to maintain current and

historical versions of files such as source code, web pages, and documentation.

Its goal is to be a mostly-compatible successor to the widely used Concurrent

Versions System (CVS).6

5. Extensible Markup Language (XML) is a set of rules for encoding documents in

machine-readable form. It is defined in the XML 1.0 Specification produced by

the W3C, and several other related specifications, all gratis open standards.7

6. Vu is a visualization software for two- and three-dimensional meshes and solu-

tions. It reads pirate files. It is developed by Benôıt Ozell at École Polytech-

nique de Montréal.8

7. ParaView is an open source, freely available program for parallel, interactive,

scientific visualization. It has a clientserver architecture to facilitate remote

visualization of datasets, and generates level of detail (LOD) models to maintain

interactive frame rates for large datasets. It is an application built on top of

the Visualization Tool Kit (VTK) libraries.9

8. LATEX is a document markup language and document preparation system for

the TEX typesetting program. The term LATEX refers only to the language in

which documents are written, not to the editor used to write those documents.10

5From en.wikipedia.org/wiki/Standard Template Library retrieved on August 23, 2011.

6From en.wikipedia.org/wiki/Apache Subversion retrieved on August 23, 2011.

7From en.wikipedia.org/wiki/XML retrieved on August 23, 2011.

8It is available on www.invisu.ca.

9From en.wikipedia.org/wiki/Paraview retrieved on August 23, 2011.

10From en.wikipedia.org/wiki/LaTeX retrieved on August 23, 2011.

xxvii

1 Introduction

Research is what I am doing when I don’t know what I am
doing.

Wernher Von Braun

1.1 The big picture

Everyday, engineers design and improve objects such as cars, planes, trains, cell

phones, computers, bridges, mines, bikes, heating systems, buildings, protheses and

robots. Engineering is a very important human, industrial and economical activity.

Most of these designs are virtual and created on a computer using a computer-aided

design (CAD) software such as AutoCAD or SolidWorks. To reduce engineering costs,

high quality three-dimensional prototypes are used as rarely as possible.

An improved design is faster, lighter, stronger, easier to build and to use, and

more powerful while being more energy-efficient, has more features and is cheaper to

produce. In short, everybody wants more for less. To achieve an improved object, the

designer must be able to evaluate physical properties of the current design. Physical

properties of an object include stress analysis, vibration damping, efficiency, heat

transfer and dissipation, sound propagation and rigidity.

The old way to proceed was to build a prototype and then measure those physical

properties using tests on the prototype. This process is lengthly and very costly. The

modern way to proceed is to perform numerical simulations on the virtual prototype

with a computer. This is fast and cheap. And if the design is not efficient enough

1

or does not meet the requirements, then the designer can easily change the virtual

design and perform another numerical simulation to see if the new design is improved.

Numerical simulation consists to solve Helmoltz equations for sound propagation

in fluid, Navier equations for sound propagation in solid, Maxwell equations for elec-

tromagnetic propagation, Laplace equation for heat dissipation and Navier-Stokes

equations for fluid flow. These equations represent the conservation of mass, mo-

mentum, energy, fluxes, chemical species, thermal energy as well as other properties.

These equations are partial differential equations with boundary conditions and ini-

tial conditions. They are usually solved with the finite element method (FEM) or

the finite volume method (FVM). These methods require that the physical domain,

where the equations are applied, be decomposed, or discretized, into a finite set of

elements. The elements are usually triangles or quadrilaterals in two dimensions,

and tetrahedra, prisms or hexahedra in three dimensions. The set of elements that

discretizes a computational domain is called a mesh. Sometimes, it is called a grid

when the elements used are only quadrilaterals in two dimensions and hexahedra in

three dimensions.

Meshes are usually created by a mesh generator. There are essentially two kinds

of mesh generators. The first kind is the unstructured mesh generator. The result is

an unstructured set of triangles in two dimensions or tetrahedra in three dimensions.

Principal methods are Delaunay mesh generator, advancing front and binary trees.

Those methods are usually fully automatic but the user has very little control on the

result.

The second kind of mesh generator is the structured mesh generator. The output is

a grid of quadrilaterals in two dimensions and a grid of hexahedra in three dimensions.

Before being used, the domain must first be decomposed into superblocks. Each of

them will later be filled with a structured grid. The decomposition of the domain

into blocks is usually not automatic. Therefore it must be done by a user, which is

time consuming. However, since the user is doing the decomposition, he has more

2

control on the process and a skilled user can create pretty good grids, usually better

than what can be done with automatic unstructured mesh generators. For more on

mesh generation, consult the most comprehensive (and stable!...) web site of Robert

Schneiders www.robertschneiders.de/meshgeneration/meshgeneration.html.

In this thesis, we will mainly use two-dimensional unstructured meshes composed

of triangles. In short, the goal of the thesis is to develop a new method to increase

the user control in automatic unstructured triangular mesh generation. Clearly, this

goal needs to be explained in more detail. This is the topic of the next section.

1.2 Mesh generation problem

We wish for this research on controlled automatic unstructured triangular mesh gen-

eration to be as general as possible. This means that we should be able to apply it

for numerical simulations in heat transfer, stress analysis, wave propagation, electro-

magnetism as well as other applications. Obviously, it is not possible in the scope of

this thesis to try all application domains. But if this research is generic enough, we

should be able to apply it for one application domain in particular. We choose the

computational fluid dynamics (CFD). This application domain requires very specific

meshes to achieve accurate numerical solutions. Historically, CFD has always pulled

research in mesh generation.

Figure 1.1 displays the result of a numerical simulation of airflow around the

generic airfoil called the NACA0012. The airflow conditions are a free stream at an

angle of attack of zero degree, a speed of 0.85 times the speed of sound (a Mach number

of 0.85) and a Reynolds number (the fluid viscosity) of 5 000. This is considered an

easy problem because, at this Reynolds number, this is a lot more viscous than real

air. The numerical simulation was done with the CFD solver NSC2kε. The first plot

displays the isocontours of the Mach number (the speed) at every 0.025. For more

details about this test case, see Section 6.2.7.

This solution presents many interesting features. The most noticeable is the wake

3

Figure 1.1: Accurate solution and corresponding mesh for the numerical simulation

of airflow around a NACA0012 airfoil.

behind the airfoil, composed of vortices travelling to the right in a von Karman alley.

But there is also a boundary layer around the airfoil, an upper and lower transonic

shock, a flow separation on the airfoil at about two thirds and recirculation around

the trailing edge.

To compute such an accurate solution with all these features, a corresponding

accurate mesh is needed. Figure 1.1 also shows the unstructured triangular mesh

used. This mesh was produced by the method developed in this thesis. This mesh has

17 740 vertices and 35 144 triangles. But the interesting fact is where those vertices

and triangles are located. Clearly the mesh is more dense where the solution has

4

some strong features and is more coarse where the solution is rather uniform. Also,

triangles are stretched and aligned with anisotropic features such as boundary layer

and shocks.

Why would we do a masters thesis on a new method for unstructured triangular

mesh generation? There are many of them available, including commercial, free and

open-source generators. For example, this thesis will use Tri△ngle for comparison.

This software was written by Jonathan Shewchuk, associate professor in computer

science at University of California at Berkeley. This software constructed 15 years

ago is free, very fast, robust and is used by so many people that it is now bug free. It

is easy to use, generic and fully automatic. The underlying method used to generate

an unstructured triangular mesh is the Delaunay method. Jonathan Shewchuk even

won the fourth J. H. Wilkinson prize for numerical software in 2003 for his software

Tri△ngle. This prize is awarded every four years since 1991 and has a bursary of US

$3000. In short, there is nothing better than Tri△ngle.

Figure 1.2 shows an unstructured triangular mesh generated by Tri△ngle over

the same NACA0012 airfoil. Parameters were adjusted such that this mesh contains

about the same number of vertices and triangles as for the previous mesh of Fig. 1.1.

In this case, there are 17 910 vertices and 35 108 triangles. However, the software

Tri△ngle has few parameters to control the mesh generated. The user manually

sets the number of vertices on the boundaries and some diffusion parameters that

increase triangle size as they get farther from the boundaries. But there is no way to

concentrate the triangles in a region like the wake or the shocks and there is no way

to stretch and align triangles along the airfoil.

Figure 1.2 also shows the solution, with the same airflow conditions, computed

on the mesh generated with Tri△ngle. If you compare with the solution of Fig. 1.1,

you can roughly see the same solution with the boundary layer and some kind of

wake. This solution is not wrong, but it is clearly not accurate. At this moment, the

typical sentence used by an engineer is: “Garbage in, garbage out.” Unstructured

5

Figure 1.2: Inappropriate triangular mesh automatically generated by the software

Tri△ngle and corresponding inaccurate solution.

triangular mesh generation is fully automatic and completely generic, but the lack

of control on the mesh generated is such that meshes cannot be used to compute

accurate solutions. In the goal of designing a better product and to gain a few more

percents of efficiency, the engineer cannot use an inaccurate tool.

More and more efficient planes, cars, turbines and cell phones exists. This means

that engineers apparently found some techniques to get accurate numerical solutions

on appropriate meshes. The most common way to proceed is to do a hand-made block

decomposition of the domain. See Fig. 1.3 for examples. The user, with a graphical

user interface, decomposes the domain into blocks. As he is doing the job by hand, he

6

takes the opportunity to put blocks where there should be a wake and shocks. Also,

because he knows that there will be a boundary layer along the walls, he creates thin

blocks aligned with the walls. Then each block is filled with a structured grid. The

engineer has two controls when creating structured grids. He can control the number

of vertices used in the three directions of the grid. He can also control the spacing of

the vertices in the three directions. All of those controls are sufficient to create long

and thin hexahedra aligned with the walls, which is very important for CFD.

Figure 1.3: Complex hand-made block decomposition of the computational domain.

Each block is then filled with a structured grid. Pictures are from the website of

Gridgen (www.pointwise.com/gridgen).

This process is not automatic. Depending on the problem, with the tools available

in the graphic user interface and with the skill of the user, it usually requires several

hours to several days to finish. This is not convenient if block decomposition must be

adjusted while optimizing the design. The probability of creating an accurate solution

on the first attempt is small and this is a problem given the amount of time required

to create a single solution.

Many automatic unstructured mesh generators are based on the Delaunay method

which is about 80 years old [13]. This problem is so “easy” that the “obvious”

solution was found even before the problem existed. The first efficient computer

7

implementation came with the computer age [24]. On the opposite, the fact that

there is still no automatic block decomposition until now, with all the research done,

is clearly an indication that this is, at least, a difficult problem, and at worst, a

problem with no solution.

A common partial solution is to have a parametrized block decomposition for a

fixed topology but a slightly variable geometry. This is commonly used in shape

optimization. The topology of the object will not change, meaning that the relation

between topological entities remains the same, but only its geometry will change.

A block topology could be set forever for all the shapes. This requires a program

dealing with CAD and geometric design. The program fits, or matches, the blocks to

the curves and surfaces of the domain. Writing such a program usually takes a few

months to a few years for a given problem. See [21] as an example.

1.3 Problem statement

In short, nothing is perfect. Everything has some advantages and some disadvantages.

The advantages of the unstructured triangular or tetrahedral mesh generation

is that it is automatic, general and computationally cheap. One software can be

applied to any possible problem on earth. The disadvantage is the lack of control

on the meshes generated. For many applications, the meshes generated is simply

unusable.

The advantage of structured grid generation with block decomposition is that

the user has some control on the mesh generated, at least enough control that the

structured mesh generated can be used for numerical simulations. The disadvantage

is that it is not automatic and is also not general. This process is time consuming

and the result for one problem cannot be reused for any other problem.

As for university research, we want to contribute to science by improving some-

thing, we have two possible choices:

8

A) Add more automaticity and generality in structured grid generation with block

decomposition.

B) Add more user control in automatic unstructured mesh generation.

Given the previous discussion about the fact that problem A) is ill-posed, or even

has no solution, then this is probably too difficult for the scope of a MSc thesis.

Therefore, B) is clearly the better choice.

The goal of this thesis is to develop, implement and test new methods

to add more user control in unstructured triangular mesh generation.

Note that the problem statement of this thesis explicitly uses the word “trian-

gular”. It means that this MSc thesis will be in two dimensions. Tackling three-

dimensional mesh generation with tetrahedra is the scope of a PhD thesis. However,

when there will be choices, if a given method does not have an obvious extension in

three dimensions, then this method should not be considered.

9

2 General framework for intelligent unstructured

mesh generation

A new or novel approach usually means you have not read
other people’s papers.

Wagdi G. Habashi

2.1 Review of the literature

2.1.1 What adding more user control in mesh generation means?

The goal of this thesis is to add more user control in unstructured triangular mesh

generation. But what does this mean?

We want the user to be able to set the size, stretching and orientation of all the

triangles of the mesh. There are usually a large amount of triangles in a mesh, so

this is a huge task for the user. Therefore, we want the user to be able to set the size,

stretching and orientation of all the triangles of the mesh, but with a minimum set

of commands and parameters.

For example, with one instruction having few parameters, we want to be able to

create a wake with small and stretched triangles along the wake, and with triangle size

increasing as they get away from the wake. Another example, with one instruction

having few parameters, we want to be able to create a boundary layer with small and

stretched triangles aligned with a curved boundary with triangle size increasing as

they get away from the boundary. We also want triangle size be inversely proportional

10

to the curvature of the boundary. Finally, although more difficult, if two boundaries

are close together, we want a finer mesh between them.

In the literature this problem is referred to as the mesh sizing problem. There are

many available publications with some partial solutions, for some given applications

and with some constrains. We must know them if we don’t want to reinvent the

wheel. We must analyze and understand them to figure out what is good and what

is bad to be able to design a new and (hopefully) better approach.

The mesh sizing problem can be divided in many sub-problems. Clearly, the final

mesh depends on the problem at hand and the shape of the boundaries. The software

to be created must take into account curves that define the computational domain.

So there must be some link with a CAD system. Which one? Catia, Creo Parametric

(previously known as Pro/Engineer), NX (previously known as Unigraphics), Auto-

cad, Capri, or should the user create his own? And how close will the link between

the software and the CAD be? We need to compute geometric characteristics such as

the distance to a curve and its curvature. This raises many questions. How will these

geometric features be computed? Where, and for which vertices, are they going to

be computed; we don’t want to compute these features for all vertices in IR2. Which

data structure will be used to store these results? How will these geometric features

be transformed into mesh sizing information? Which sizing information, a singular

size value only or a combination of size, stretch and orientation will be chosen? At

which level will the user have control and which controls should be made available?

How generic will the solution be? Is it good only for CFD, or can it be applied for

heat transfer, stress analysis, electromagnetism, etc?

In short, there are many sub-problems to the mesh sizing problem, and even more

possible solutions. The following sections contain a review of the literature where

each contribution contains some solutions to some of the previous sub-problems.

11

2.1.2 Where to compute?

We want to compute geometric characteristics of the domain, the distance to a curve

being an example, at a given point of the geometric domain. This information will

then be transformed into a size. The question is which points should be used? In

an ideal world, all points inside the geometric domain could be used. But this set is

infinite. Realistically, a finite subset must be used. Which one? Many answers are

found in the literature.

2.1.2.1 Vertices selected on the fly

In [11, 16], the authors do three tasks at the same time. They evaluate geometric

characteristics, transform this information into a size value and generate a vertex to

be added in the mesh generated with an advancing front method. This means that

geometric characteristics are evaluated at the point where the next vertex of the mesh

will be generated.

There is no need for an external data structure with vertex locations that overlaps

the domain. The advantage to this approach is that there is no additional storage

required in the computer’s memory because the geometric characteristics and the size

values derived are applied immediately, and the information is then discarded.

While this approach saves in computer storage, a disadvantage may be the loss

in terms of speed of execution. The location of each vertex of the generated mesh is

the result of trial and error, so geometric characteristics may be computed for many

locations for each vertex.

2.1.2.2 Overlapping grid

A grid is a structured mesh of Ni × Nj vertices composed of (Ni − 1) × (Nj − 1)

quadrilaterals in two dimensions, or a mesh of Ni × Nj × Nk vertices composed of

(Ni − 1) × (Nj − 1) × (Nk − 1) hexahedra in three dimensions. In mesh sizing,

12

we usually use regularly spaced grids. It is easy to find a big rectangle [xmin, xmax] ×

[ymin, ymax] that bounds the geometric domain in two dimensions, or a big hexahedron

[xmin, xmax] × [ymin, ymax] × [zmin, zmax] that bounds the geometric domain in three

dimensions. Then a regular grid is used to discretize the rectangle or hexahedron.

Some of the grid’s vertices will be inside the geometric domain, some will be outside.

There may be some vertices that are exactly on the boundaries of the geometric

domain. This is not an obvious task to figure out if a vertex is inside or outside

the geometric domain. For each grid vertex, we can compute and store geometric

characteristics of the geometric domain. For any given point, it is easy to compute

in which quadrilateral or hexahedron it belongs, in order to retrieve stored values at

grid vertices around and interpolate stored values.

This approach has many advantages. It is very simple and straightforward to

implement. However, it has many disadvantages. No, or few, vertices of the grid

will be on the the boundaries. This means that the vertices will have a positive

distance to the boundaries. If a point is set on the boundaries and its distance to

the boundaries is interpolated from stored values, its distances to the boundaries will

not be zero. In short, a grid is not “body-fitted”. Also, if the geometric domain is

thin, almost all the grid’s vertices will be outside the geometric domain and few, even

none, will be inside. One can increase the accuracy and the number of vertices inside

the geometric domain by using finer and finer grids. But this is costly in computer

time and memory.

2.1.2.3 Overlapping quadtree and octree

Quadtrees are data structures similar to grids. The quadtree overlaps the geometric

domain. However, each quadrilateral in the quadtree, may or may not be decomposed

into four sub-quadrilaterals, totally independent of the neighbour quadrilaterals. The

subdivision could be recursive. Octrees are three-dimensional grids where each hexa-

hedron could be subdivided recursively into eight sub-hexahedra. The advantage to

13

this approach is that the user can choose how many levels of sub-grids are contained

at each location on the domain. Using this intuition the user can add more precision

in the important areas. Implementations of the grid approach exist in [12, 35].

However, there are drawbacks to this approach. The binary trees are still not

body-fitted. It is still a separate entity from the geometric domain, and as a result

there is a loss of precision at all points in the grid. If the binary tree is infinitely

subdivided, the error converges towards zero. Also, this data structure is not so easy

to program, but is a classic computer science exercise of style.

2.1.2.4 Overlapping loose mesh

Some implementations overlap the geometric domain by a “loose” unstructured mesh [19,

32]. The mesh could be loose in many ways. It may not have vertices inside the do-

main, but only on the boundaries. It may have vertices on the boundaries, but the

edges between boundary vertices may not be on boundaries (we say that it is not a

constrained Delaunay mesh). It may have edges and triangles outside of the geomet-

ric domain (we say that the mesh overlaps the convex hull of the geometric domain).

In all cases, the unstructured mesh at least overlaps the geometric domain and some

vertices are on the boundaries.

The advantages are that a loose mesh is easy to build and is loosely body-fitted.

The disadvantage is that it is still an extra data structure. These days, it is so easy

to have a Delaunay mesh of any geometric domain that this approach is somehow

unjustified.

2.1.2.5 Conformal mesh

Contrary to the loose mesh, the conformal mesh is a discretization of the geometric

domain. There is no vertex, edge or element outside the geometric domain. The

boundary vertices of the mesh are actually on the boundaries of the geometric domain.

The boundary edges of the mesh are on the boundaries of the geometric domain. We

14

say that the mesh is body-fitted. The distance of boundary vertices to the boundaries

is exactly zero by construction.

Nowadays, such a mesh can be generated quickly by open source software in two

and three dimensions. Any CAD system can generate an unstructured mesh of the

geometric domain in very few clicks. One disadvantage is that an unstructured set of

triangles or tetrahedra is more difficult to work with than a regular grid. But this is

the usual task of any unstructured finite element solver and apparently, programmers

can survive using connectivity tables. This approach is used in [14].

2.1.3 What would be the output

From the previous section Where to compute?, a set of vertices to compute geomet-

ric characteristics was selected. Geometric characteristics at these location will be

computed and then transformed into some size for the mesh to be built. For the size,

there are two main schools of thought, isotropic and anisotropic.

2.1.3.1 Isotropic size value

The isotropic size value h ([10, 11, 12, 16]) is one such way to represent the desired

mesh size. The triangles in that area on the final mesh will respect this size value h

as closely as possible. However, this value does not specify requirements as stretching

and orientation of those triangles and the triangle’s edges will be close to equal at all

times.

Figure 2.1 from [23] shows a graphical representation of a field of size. On a

regular grid that overlaps the geometric domain (which is simply a rectangle in this

case), the field of sizes is represented by circles whose diameter corresponds to some

specified size. On the right, you can see the corresponding mesh where triangles are

about the specified sizes. Note that only the size is specified and since the circles are

all perfectly round, and there is no stretching or orientation. The triangles in the

15

corresponding mesh are all close to being equilateral. In this case, we say that the

mesh is isotropic.

Figure 2.1: Various circles representing isotropic size of triangles.

2.1.3.2 Anisotropic size value

Any engineer with experience in numerical simulations, especially computational fluid

dynamics, knows that many phenomenons are localized and directional. Boundary

layers, wakes, and shocks are examples in fluid flow. Any engineer that did some

numerical simulations knows that stretched and aligned triangles with directional

phenomenons give better results. Therefore, they all want the capability to build

such meshes. Those meshes are called anisotropic.

An anisotropic size value is represented by a metric tensor, which is a symmetric

positive definite matrix. This is used in [2, 5, 14, 19, 20, 25, 26, 27, 35] amongst many

other publications. In two dimensions, a 2×2 symmetric positive definite matrix can

be graphically represented by an ellipse. An ellipse has two axes, corresponding to

the two eigenvectors of the matrix, so the orientation of the mesh triangles can be

controlled. The axes have two lengths, corresponding to the two eigenvalues of the

16

matrix, so the size of the mesh triangles can be controlled. Metric tensors give the

user a lot more control on the mesh he wishes to have.

Also, metric tensors generalize isotropic sizes. It is sufficient to set as equal the

two sizes of a metric tensor to have an isotropic metric tensor.

Figure 2.2 from [23] shows a graphical representation of a field of metric tensors.

On a regular grid which overlaps the geometric domain (which is simply a rectangle

in this case), the metric tensors are represented by ellipses. On the right, you can see

the corresponding mesh where triangles are about the specified size, stretching and

orientation.

Figure 2.2: Various ellipses representing anisotropic size of triangles.

2.1.4 Computation of geometric characteristics

In the mesh sizing problem, we want the mesh to be sensitive to geometric character-

istics of the geometric domain. Depending of the problem at hand, many geometric

characteristics could be evaluated.

17

2.1.4.1 Distance to a boundary

Distance to a boundary is the most common geometric characteristic in literature.

We want the mesh to be finer close to the boundary and more and more coarser as we

get farther from the boundary. To set the size of the mesh at a given point, we need

to know the distance of that point to a boundary. Some solutions such as [10, 14]

require a size value to be set according to the distance of mesh points from a specific

boundary.

2.1.4.2 Curvature of a boundary

A triangular or quadrilateral mesh in two dimensions, or a tetrahedral or hexahedral

mesh in three dimensions, are all composed of linear elements. Geometric models are

all composed of curves. The discretization of curves by linear elements introduces

discretization error, especially where the curvature of the curve is high. One alterna-

tive is to have smaller elements where the curvature is strong. By having the element

size set accordingly to the curvature, it is possible to reduce the error between the

curve and the edges of the mesh. In short, we need to compute boundary curvature

to set the mesh size accordingly. Solutions that calculate the curvature of boundaries

include [12, 26, 35].

2.1.4.3 Distance to a vertex

In many numerical simulations, sharp corners on boundaries of the geometric model

will introduce some discontinuities in the solution. To have an accurate solution in

the vicinity of a sharp corner, a finer mesh is needed. Sharp corners in a geometric

model are usually represented by a vertex. In such cases, we need to compute the

distance to a vertex and set the mesh size accordingly. Such examples exist in [14].

18

2.1.4.4 Thickness between two close boundaries

Sometimes, geometric characteristics such as the curvature of boundaries and distance

to boundaries are not sufficient to take into account the fact that two boundaries are

close proximity of each other. A typical example of narrow passage in CFD are

nozzles. Two smooth curves that are close together causes the fluid flow to accel-

erate, producing interesting flow features that require a finer mesh to be simulated

accurately. Some algorithm exists to detect boundary proximities in [12, 14, 35].

2.1.5 Methods to compute geometric characteristics

From the previous section, there are many mesh sizing approaches in the literature

that require the evaluation of some, or all geometric characteristics introduced previ-

ously. Each paper uses different methods to evaluate these geometric characteristics.

2.1.5.1 Use of proprietary CAD library

Some implementations such as [11, 16] depend on the CAD library in order to perform

calculations. Questions such as the distance to a curve or the curvature of a curve

are forwarded to the appropriate functions of the CAD library. Such approaches are

precise, assuming that the CAD library is well written. However, interfacing with the

API of the library can be a difficult task. Also, CAD libraries are commercialized,

so they can be expensive and difficult to obtain. And once a software is link to one

particular CAD system, it is not done for the others. A workaround is to work with

CADNexus/CAPRI CAE Gateway, which is a buffer layer between an application

and many CAD libraries.

2.1.5.2 Recreate in-house CAD system

As a workaround for the commercial CAD problem, some have created their own

in-house CAD library based on a discrete representation of the geometric domain.

19

In [7], the design done in AutoCAD is exported as an STL (stereolithography)

file. This file contains the boundaries of the geometric design as polygons in two

dimensions, or as a mesh of three-dimensional triangles in three dimensions. Then

the mesh generation software, which was developed, used this information instead of

the initial design in AutoCAD, which makes this approach independent of AutoCAD.

The approach is similar for the software MEF++ (Méthode des éléments finis

en C++) developed at GIREF (Groupe Interdisciplinaire de Recherche en Éléments

finis) of Laval University in Quebec City. Regardless of the CAD system used, a

mesh of the geometric domain is produced in the CAD system, and is exported to a

file. Then MEF++ imports this mesh, extracts the boundary triangles and recreates

an in-house representation of the geometric domain from the discrete triangulated

boundaries.

2.1.5.3 Grid

Another approach is to use the overlapping grid, or binary tree, as an approximation

of the boundaries. By storing appropriate information on the grid, questions like the

distance to the wall or the curvature of the wall could be answered approximately

by some algorithm performed on the grid. Implementations of this approach exist

in [12, 35]. Such approaches are simple. However the grid is not body-fitted to the

geometric domain, therefore there is a loss of precision for all points.

2.1.6 Execution control given to user

In all approaches, there has to be a user that initiates an execution in order to get

a result. What differs is how much control the user has in driving the program to

generate the desired result.

20

2.1.6.1 Hard-coded execution

Most implementations are inspired by a single application domain, and maybe also

by a single geometric domain, and therefore it is sufficient to have a single execution

procedure that does not vary. While this approach is sufficient to resolve the given

problem, it cannot be used to solve other problems in other domains. Another dis-

advantage is that the user cannot change any properties of the algorithms without

modifying and re-compiling the code, which is not always possible if the user is not

the original programmer of the software.

2.1.6.2 Execution parameters

Sometimes a list of parameters can be made available to the user where he can assign

values to specific parameters that are provided by the program. Examples of such

parameters include the number of iterations or the error tolerance value to determine

how closely the mesh will try to duplicate a curve. Approaches that allow users to

input some parameters for rather specific problems are [21, 26] for example.

Unfortunately, this approach only makes certain parameters available and some-

times the user still does not have enough control on the execution. It is also possible

that a user desires having a parameter vary for different regions in the mesh.

2.1.7 Direct versus iterative execution

Is computing geometric characteristics, transforming them in metric tensors and cre-

ating the corresponding mesh to be done in one shot (a direct approach) or should it

be done in a process with feedback (iterative approach)?

2.1.7.1 Direct

Many approaches do all the steps in one shot. For example, in [11, 12, 16, 35] once

the mesh is created, there is no further work that can be done. Re-executing with

21

the same parameters will not change the result. The only way to further improve the

mesh is by changing the input parameters.

2.1.7.2 Iterative

Other implementations can re-execute the same algorithms on an already adapted

mesh for further improvements. Such examples include [14, 18]. Since the mesh is

used for calculations, if one re-calculates on an adapted mesh, which is different and

improved from the previous mesh, the environment is different and thus it is possible

to obtain better geometric characteristics, better size and finally a better mesh.

It is believed that mesh generation, adaptation or optimization is in fact a NP-hard

problem. Using nomenclature of metaheuristics, a one-shot approach corresponds to

a greedy algorithm. Greedy algorithms will not give the optimal result, but could, at

least, give a satisfying result. However, an iterative approach, driven by some cost

function to optimize, allows modifications from a previous state and should produce

better results.

2.1.8 Scope

The mesh sizing problem has been applied to many different application domains.

Each domain has a different set of requirements and a different purpose. Developing

a software that can satisfy the needs of all application domains is a big challenge.

Computational fluid dynamics (CFD) involves computing fluid flow through a

space where there are obstacles. This involves boundary layers with turbulence mod-

els, wakes and shocks. In this case, the mesh sizing problem requires the capability

of creating anisotropic and localized meshes.

The molding of plastic objects is also an area where mesh sizing is critical. In

this application, we simulate the pouring of liquid in the mold and then calculate the

cooling period required for the object to harden. The geometric domain is a mold

and they are usually characterised by thin walls. This simulation requires enough

22

elements across the width of the walls in order to calculate the propagation of the

liquid throughout the walls. If the mesh is isotropic and if there are enough elements

across the width, then it implies a very fine overall mesh. As the mold is a thin wall

with flat boundaries close to each other, the ability to detect close boundaries and to

have anisotropic elements between boundaries is critical.

Electromagnetism is an application that requires sizing the mesh appropriately in

order to accurately run a simulation. This domain applies to calculating the magnetic

field created by electric motors, studying the effect of cell phone waves on the human

body and studying the effects of lightning striking a lightning rod. In all of these

cases, a fine mesh in the area where the phenomenon takes place is required.

In short, all application domains may have their own requirements on meshes.

However, a good mesh sizing tool should be flexible enough to allow the experimented

user to create the mesh he needs.

2.2 SmartMesh, a new approach of the mesh sizing problem

Given what we have learned in studying previous works in mesh sizing, this section will

propose a new approach that will attempt to take advantage of what past approaches

do well, while trying to eliminate the drawbacks. The new approach described in this

thesis will be called SmartMesh.

2.2.1 Data structure

The data calculated during the execution will be stored in the mesh itself. This means

that no additional data structure needs to be created because the vertex is already

part of the implementation. Instead, it is only necessary to extend the storage within

the already existing vertex.

Unlike all overlapping approaches, the mesh is body-fitted to the domain and

therefore the vertices, especially along the domain boundaries, are located exactly

23

on the boundaries. This approach will also allow the use of neighbour propagation

algorithms to calculate geometric properties.

2.2.2 Use of metrics

Each mesh vertex will have a stored 2 × 2 symmetric positive definite matrix. This

matrix can be decomposed into two eigenvalues and two eigenvectors which can then

be used to represent an ellipse. The eigenvectors represent the orientation of the

ellipse while the eigenvalues represent the corresponding size along each axis of this

ellipse. This gives a lot of flexibility to the user in being able to better control the

mesh size, stretching and orientation.

2.2.3 Multi-domain capability

In SmartMesh all general algorithms will be made available. This will allow the

software to be applicable for all application domains. It is the user’s responsibility

to select the correct algorithms with the correct parameters in order to achieve the

desired result.

Also, additional parameters must be made available so that the user can control

the rate of change in mesh size based on a given entity’s proximity relative to the

region of interest.

2.2.4 Perform calculations on mesh

In SmartMesh, the computations of geometric characteristics are performed on the

mesh itself. The mesh must store links towards the topology of the geometric model,

but does not need to take into account the geometric part of the geometric model.

Therefore, SmartMesh does not have to be bounded to a single computer-aided design

software since the calculations can be done without knowledge of the curves defined

in the geometric model.

24

Furthermore, the boundaries, which are curves in the geometric models, will be

polygons in the mesh. This makes the implementation of algorithms which calculate

geometric characteristics, such as the distance to the boundary, very easy and fail-free.

While the approach of using the mesh for calculations leads to a loss of precision

due to the fact that the curves in the geometric model are not used, the user can

control this loss of precision by specifying a more precise mesh where needed.

2.2.5 Use of neighbour propagation

In this approach, neighbour propagation techniques will be used. Since we are using

the mesh itself to perform calculations, the graph structure of the mesh allows for

easy traversal from one vertex to a neighbour vertex. Therefore from a start point,

it is easy to complete an algorithm without visiting all the mesh vertices.

Also, the storage of additional information at each vertex can further reduce the

amount of work required if neighbours can exchange information amongst themselves.

The goal for all algorithms in SmartMesh is that each vertex can compute its ge-

ometric characteristics in O(1) time. The transformation of geometric characteristics

into a metric tensor must also be in O(1) time.

2.2.6 Iterative approach

The creation of an initial Delaunay mesh is fast and easy. However such a mesh is not

necessarily suitable for CFD simulations. But with an initial bad mesh it is possible

to compute geometric characteristics and store the new metric tensors in the mesh

vertices in order to achieve a better mesh.

Unfortunately it is impossible for a mesh to be adapted to a user’s needs in a

single iteration. Typically the initial mesh is very bad for CFD simulations. It may

be also very bad for geometric characteristic computations. Computations can only

be made at mesh vertices and if these vertices are not close enough, it is impossible

to get the correct picture in the refined mesh. In essence, not having enough vertices

25

(large triangles) means there is not enough of a sample to immediately generate a

new solution that satisfies the user.

However, even though the new mesh does not entirely satisfy the user’s needs, it

will have a much higher amount of vertices in the areas of interest. From here, if we

re-apply the user’s desired algorithms at these new points, it is now possible to get

an even better picture of what the final mesh needs to look like.

Using this iterative approach, it is possible to eventually converge towards a mesh

that satisfies the user’s request. By iterating, we are able to obtain this result regard-

less of the quality of the initial mesh.

2.2.7 Specifications on the geometric model

The mesh is a discretization of a geometric model. While the mesh will be modified

during the iterations of mesh adaptation, the geometric model will remain unchanged.

Each alternative mesh must continue to conform to the boundaries of the geometric

model.

Since the geometric model remains constant, this becomes the backbone from

which the user will specify his algorithms to execute and their respective parameters.

From there, several meshes will be created and eventually converge towards those

specifications.

2.2.8 Separate execution parameters from mesh structure and algorithms

It is important that the execution be separate from the rest of SmartMesh compo-

nents. With this separation the user can then select via execution configuration which

algorithms to execute, their order of execution and the parameters to be used.

The parameters specified by the user target topological regions on the geometric

domain which does not change during the iterative execution.

26

2.2.9 Full control to user

With this capability, the user can fully control the execution in order to achieve the

result that satisfies the requirements of his particular problem. SmartMesh is flexible

to any execution configuration; the user’s expertise drives SmartMesh to perform the

correct operations.

The user can specify which algorithms to use, the order of their execution and the

parameters to use for each algorithm executed. A computer is fast, but not intelligent.

The intelligence comes from the user and his capability to script his knowledge into

a file of parameters.

2.2.10 Generalized algorithms to be used

In order to create a general framework for intelligent mesh generation, it is important

to establish algorithms that go beyond the properties of a single application domain.

One must define general algorithms that transform geometric properties into a phys-

ical size that can be used to modify the mesh appropriately.

The algorithms in this section form the foundation that will be used in the imple-

mentation of all algorithms in SmartMesh.

2.2.10.1 Uniform algorithm

It would be useful to define an algorithm that can assign constant sized isotropic

triangles in a particular region of the mesh. Even though SmartMesh is only useful

for localized problems requiring anisotropic triangles in the mesh, there are still re-

quirements for such triangles, particularly in the areas of the mesh not affected by

any other mesh changes.

This algorithm can also be used to assign a base size for the mesh in order to

avoid situations where the mesh suffers from an extreme change in mesh size between

algorithm-affected areas and the rest of the mesh.

27

2.2.10.2 Distance to a vertex

In many problems there are vertices around which the mesh should be more fine. In

order to satisfy this problem we must define an algorithm where the size of mesh

triangles located near a particular vertex of interest are modified in relation to the

distance from this vertex.

2.2.10.3 Distance to a segment

This algorithm defines the distance of a vertex to a segment that is bounded by two

points. The distance in question projects the vertex to either one point, the other

point, or to a location on the segment. If the projection is on one of the two extremities

of the segment, the distance is easy to calculate because the exact coordinates of these

two extremities are known. However, if the vertex in question projects to a location on

the segment situated somewhere between the two extremities, calculating the distance

between the vertex and the segment is more complicated. This is described in [36].

2.2.10.4 Distance to a polyline

While the distance to segment algorithm is useful in determining the distance between

a vertex and a segment bounded by two other vertices, this is often too restrictive

for real problems. For example, a user would prefer to know the distance between a

vertex and a set of segments forming a domain boundary rather than a single segment.

This algorithm is essentially an extension of the distance to segment algorithm.

In [9, 36] it is proposed that when projecting the vertex in question to a segment,

if the vertex projects to one of the segment’s extremities, then one can assume that

the closest location on the polyline is either on another segment or exactly on the

projected location. If the projection is on the segment somewhere between the two

extremities, we know that this segment is the closest and these geometric properties

can be used.

28

There are two ways to find the distance to a polyline: brute force and neighbour

propagation.

The brute force approach stipulates that for each point that we wish to test, we

must calculate its distance from all segments composing the polyline in question and

retain the minimal value. Using this approach, for each of the n vertices of the mesh

we would have to calculate the distance to each of the m edges forming the polyline.

This gives a complexity of O(n × m).

The first downside to this approach is that each vertex in the mesh must be tested

by each algorithm. Unfortunately, most algorithms only require modifying a small

subset of the vertices, so there are a lot of unnecessary computations.

The second downside is that each edge on the polyline must be examined for each

vertex. This is unnecessary because polylines can span over a large area and the

vertex in question could find the closest location on the polyline more quickly if some

helpful information could be retained.

The other approach is to take advantage of neighbour propagation while retaining

information regarding each vertex’s localization on the polyline. This information is

passed to its immediate neighbours as a guess. The idea is that the neighbour’s closest

segment is either the one passed by the neighbour vertex or one that is very close.

This allows each point to find its closest segment on the polyline without having to

compare each segment every time.

The neighbour propagation approach allows for each vertex to find its closest

location on the polyline in O(1) time for each of the n vertices affected, giving the

algorithm a complexity of O(n).

2.2.10.5 Breadth-first search

In order to correctly propagate throughout the graph during the execution of an

algorithm, neighbour propagation is used. This will be done using breadth-first search

(BFS). The breadth-first search will be aided by a queue, which is a first-in first-out

29

(FIFO) data structure which determines the order in which vertices on the queue are

processed. They are processed in the order that they are added to the queue, and

any new vertices are pushed to the back of the queue.

4

10

83

1314 11 7

1

15 12 2 6

9

516

192134156

5 10 3

714 81112

LS1: 3

LS2: 7, 8, 10

LS3: 1, 9, 2, 11, 13, 5, 12

LS4: 4, 14, 15

LS5: 6

Figure 2.3: Example of breadth-first search on a triangular mesh, which is a planar

graph.

Figure 2.3 illustrates BFS beginning with vertex 3 being assigned to the level LS1.

This vertex has three neighbours, vertices 7, 8 and 10 which are assigned to level LS2.

The vertices in LS2 have seven neighbours not already processed, vertices 1, 2, 5, 9,

11, 12 and 13. These vertices are assigned to LS3. The process continues until all

vertices are assigned to a level.

Suppose that vertex 3 represents the source vertex in a distance to vertex algo-

rithm. The same process can be applied using a queue. Initially vertex 3 is pushed

onto the queue. The queue now contains 〈3〉. After popping and processing vertex 3,

its three neighbours (vertices 7, 8 and 10) are pushed onto the queue. The queue now

contains 〈7, 8, 10〉. Vertex 7 is popped from the queue. Its unprocessed neighbours

are vertices 1 and 9. These vertices are pushed to the back of the queue. The queue

now contains 〈8, 10, 1, 9〉. This process continues until all vertices are processed.

30

3 Riemannian metric

The important thing in science is not so much to obtain new
facts as to discover new ways of thinking about them.

Sir William Bragg

3.1 Metrics

3.1.1 Distance

Intuitively, the distance is a function. The letter d is usually used for this function.

The inputs are two points in the space. The output is a positive number. This

number is the length of the straight line between the two points. A more mathematical

definition of the function d is as follows. Let IR2 be the set of points in two-dimensional

Euclidean space. Then the function d : IR2 × IR2 7→ IR defined as

d(P,Q) = d









Px

Py



 ,





Qx

Qy







 =
√

(Px − Qx)2 + (Py − Qy)2

which is the well-known Euclidean distance between the two points P and Q. The

distance function satisfies the usual following four properties:

(i) d(P,Q) ≥ 0 for all P , Q in IR2;

(ii) d(P,Q) = 0 if and only if P = Q;

(iii) d(P,Q) = d(Q,P) for all P , Q in IR2;

(iv) d(P,Q) ≤ d(P,R) + d(R,Q) for all P , Q, R in IR2.

31

The first property says that the distance between two points is always positive or null.

The second property says that the distance between two points is null if and only if

the two points are the same. The third property says that the distance between two

points is symmetric. The last property says that the distance between two points

satisfies the triangle inequality.

3.1.2 Metric, a generalization of distance

A metric is any function between two points that satisfies the above four properties.

Sure, the well-known usual Euclidean distance
√

(Px − Qx)2 + (Py − Qy)2 satisfies the

four properties, so it is a metric, but there exists other functions that satisfy the four

properties. All those functions are called metric and are some kind of generalization

of the distance function.

One common generalization of the distance function is based on the scalar product.

Any college student knows that the distance between points P and Q is the norm of

the length of the vector from P to Q, and this norm is the square root of the scalar

product of the vector ~PQ with itself. In short, we have

d(P,Q) = ‖Q − P‖ =
√

(Q − P) · (Q − P) =
√

〈(Q − P), (Q − P)〉

=

√

√

√

√

√





Qx − Px

Qy − Py



 ·





Qx − Px

Qy − Py



 =
√

(Px − Qx)2 + (Py − Qy)2.

We generalize the scalar product by introducing a symmetric matrix

M =





a b

b c





in the scalar product

〈u,v〉M = uTMv =





ux

uy





T 



a b

b c









vx

vy



 = a(uxvx) + b(uxvy + uyvx) + c(uyvy).

32

In the latter equation, if both u and v are the vector ~PQ from P to Q, then the

generalized distance between P and Q is given by

d2
M(P,Q) = ‖Q − P‖2

M = 〈Q − P,Q − P 〉2M = (Q − P)TM(Q − P)

=





Qx − Px

Qy − Py





T 



a b

b c









Qx − Px

Qy − Py





= a(Qx − Px)
2 + 2b(Qx − Px)(Qy − Py) + c(Qy − Py)

2. (3.1)

Note that all the terms in the previous equation were squared to avoid writing the

square roots. Note also that if the matrix M is the identity matrix, then a = 1, b = 0

and c = 1. In this case, the metric (3.1) is

dM(P,Q) = dI(P,Q) =
√

(Qx − Px)2 + (Qy − Py)2 = d(P,Q)

which is the well-known usual Euclidean distance between the two points.

3.1.3 Metric tensors

In the Eq. (3.1) of a metric, the matrix M is called a metric tensor. This matrix

must be symmetric (strictly) positive definite. These conditions are needed to satisfy

the four properties. The matrix must be symmetric to have the symmetry, i.e., such

that dM(P,Q) = dM(Q,P) for all P and Q. It must be positive definite to have

positivity, i.e., such that dM(P,Q) ≥ 0 for all P and Q. It must be strictly positive

definite to satisfy identity, i.e., such that dM(P,Q) = 0 if and only if P = Q.

A 2 × 2 symmetric positive definite matrix can be represented graphically by an

ellipse. The two axes of the ellipse will be the two eigenvectors of the matrix. The two

lengths of the ellipse axes will be the eigenvalues of the matrix. In the context of mesh

generation and adaptation, representing metric tensors by ellipses is a convenient way

to visualize the size, stretching and orientation of the mesh we wish to build. If the

eigenvalues are large, the ellipse will be large and it means that we want very small

triangles. If the eigenvalues are small, the ellipse will be small and it means that we

33

want very large triangles. Therefore metric tensors represent the density of the mesh,

to be exact, the square density. For this reason, in the context of mesh generation

and adaptation, metric tensors are also called square density tensors.

3.1.4 Size tensors

Size tensors are an alternative way of representing metric tensors. The first eigenvec-

tor of the matrix represents the orientation of one axis in the ellipse representing the

tensor. The second eigenvector is perpendicular to the first one. The two eigenvalues

represent the size of each axis. The resulting ellipse represents the size of the desired

triangle at that position in the mesh.

Contrary to square density tensors, size tensors that are larger represent larger

triangles, and smaller tensors imply smaller triangles.

In SmartMesh we use size tensors because their values directly represent the

corresponding mesh size. This helps with readability because a user can easily de-

termine mesh size by looking at the corresponding size tensor without any additional

conversions of values.

3.1.5 Conversion from size tensor to metric tensor

While it is convenient to work with size tensors in SmartMesh, it is important to

have the capability to convert them to metric tensors because having the capacity to

express the mesh in both formats offers many advantages when outputting the results

and interacting with other programs. In particular, this thesis will use OORT and

this program needs metric tensors. This metric tensor M can be decomposed as

M = PΛP T (3.2)

where P is the permutation matrix composed of the unit eigenvectors in column,

Λ is a diagonal matrix with the eigenvalues on the diagonal, and P T is simply the

34

transpose of P . We can obtain the size tensor S from the metric tensor M as follows

S = PΛ−2P T

where Λ−2 is the diagonal matrix obtained from Λ where all diagonal elements λi of

S are substituted with 1/λ2
i .

3.1.6 Conversion from metric tensor to size tensor

Inversely, we can obtain the metric tensor M from the size tensor S as follows

M = PΛ−2P T

where Λ−2 is the diagonal matrix obtained from Λ where all diagonal element λi is

substituted with 1/λ2
i . The matrix P is the same as defined in Eq. (3.2).

3.1.7 Construction of size tensor

A size tensor in two dimensions has two eigenvalues λ1 and λ2 which represent the

length of their respective eigenvector. The first eigenvector has components n1 and

n2 while the second eigenvector is perpendicular to the first eigenvector and has

components n2 and −n1.

3.1.7.1 Anisotropic size tensor

An anisotropic size tensor S can be constructed given two eigenvalues and their

respective eigenvectors with the equation

S =





n1 n2

n2 −n1









λ1 0

0 λ2









n1 n2

n2 −n1



 . (3.3)

35

3.1.7.2 Isotropic size tensor

An isotropic size tensor S can be constructed given one size value s with the equation

S =





1 0

0 1









s 0

0 s









1 0

0 1



 .

3.2 Tensor intersection

While the use of size tensors in mesh adaptation offers the user a lot of flexibility

in properly manipulating the mesh size, one must have a method to set the values

of these size tensors. What if a user wishes to apply multiple sizes to the same

vertex? How does one transform many size tensors into a single size tensor that

correctly represents the size, stretch and orientation stored in a particular vertex?

The solution is to use tensor intersection.

Given two input size tensors, the goal of an intersection operation is to find a new

size tensor that represents what is common between its two inputs. There are many

methods that determine the intersection of two tensors, each having advantages and

disadvantages.

3.2.1 Alauzet metric tensor intersection

The Alauzet intersection method described in [3, 4, 6] is a series of algebraic opera-

tions on matrices. The goal is to simultaneously reduce the matrices until the result

corresponds to an ellipse that is the intersection of the ellipses representing the two

input matrices.

As an advantage there is no need to decompose the input matrices into ellipses in

order to perform the calculations. However, this method has some severe drawbacks.

The algorithm does not work if the two matrices are equal or if the ellipse representing

one of the matrices is contained completely inside the ellipse of the other matrix.

36

3.2.2 Robust size metric intersection

Recall that a metric tensor can be represented as an ellipse. In the case of size tensors,

which is what we use in SmartMesh, the ellipse directly represents the dimensions of

the corresponding triangle. Therefore, if we intersect ellipses representing two differ-

ent size tensors, the largest ellipse included in the intersection is the representation

of the intersected size tensor. This intersected size tensor represents the dimension

of the triangle that satisfies the two initial size tensors.

The intersection algorithm proposed in [28] does not have the drawbacks of the

Alauzet method. The inspiration is to work with ellipses because they are geometric

and directly represent the desired mesh size. This method works correctly for the

cases where the Alauzet method fails.

Initially, each size tensor in the mesh is given a uniform size. Then, when an

algorithm generates a new size tensor for a given vertex, the intersection algorithm is

performed using the vertex’s initial tensor along with the new one generated by the

algorithm. The resulting tensor is stored as that vertex’s new size tensor.

The inputs are two size tensors EM1
and EM2

. The output will be the size tensor

EM1∩2
.

0.60.40-0.2-0.4 0.2-0.6

0.1

-0.1

0.2

-0.2

0

EM2

EM1

Figure 3.1: EM1
and EM2

in regular space.

The algorithm begins by transforming EM1
into a unit circle using a transformation

37

T . The same transformation T is then applied to EM2
.

10.50

-1

-1 1.5-0.5

0.5

-0.5

0
-1.5

1

EM′

1

EM′

2

Figure 3.2: EM′

1
(a unit circle) and EM′

2
in T space.

At this point we have one of three scenarios:

• EM′

1
is contained completely in EM′

2
. EM′

1∩2
is assigned EM′

1
.

• EM′

2
is contained completely in EM′

1
. EM′

1∩2
is assigned EM′

2
.

• Neither EM′

1
or EM′

2
is contained completely inside the other. However we can

see in Fig. 3.3 that we can easily calculate the dimensions of EM′

1∩2
. The axes

of EM′

1∩2
are the same as the axes of EM′

2
. In matrix notation, the eigenvectors

of M′
1∩2 are the same eigenvectors as the eigenvectors of M′

2. The length of the

axes of EM′

1∩2
are the minimum between 1 and the length of the axes of EM′

2
.

In matrix notation, the eigenvalues of M′
1∩2 are the minimum between 1 and

the eigenvalues of M′
2.

Now, the transformation T−1 is applied to EM′

1∩2
to return to the original state.

The ellipse EM1∩2
is the largest ellipse included in the intersection of EM1

and

EM2
.

Metric intersection is commutative. However, it is important to note that metric

intersection is not associative. The final result will depend of the order in which three

or more tensors will be intersected, although the difference is very minor. For more

details see [31].

38

10.50-1-1.5 1.5-0.5

0.5

-0.5

0

1

-1

EM′

1

EM′

2

EM′

1∩2

Figure 3.3: EM′

1∩2
in T space.

0-0.2-0.4

0.2

0.1

0.60.4-0.6
0

-0.1

0.2

-0.2

EM1∩2 EM1

EM2

Figure 3.4: EM1∩2
in regular space.

If an implementation uses metric tensors instead of size tensors, there are two

ways to proceed: one can first transform the metric tensors into size tensors, perform

the intersection and transform the result back to metric tensors, or one can instead

find the union of the ellipses representing the two metric tensors. The results of a

union operation will give a new metric tensor that represents the combined density

of both inputs.

3.3 Functions

In most problems it is essential to have a finer mesh at certain specific regions, which

could be a geometric curve or a geometric vertex. It is also essential that the size

39

of triangles gradually increase as the distance from the geometric region in question

increases. How does one determine the mesh size close to an entity of interest? How

does one determine the rate of growth for mesh triangles as the distance from that

location increases? One solution is to apply functions so that, given one or more

inputs such as the distance or the curvature, one can translate these values into a size

value that can be stored in the mesh.

SmartMesh needs functions to help determine the dimensions of size tensors

throughout the mesh. A function can be used to manipulate one or both eigenvalues

of a size tensor.

3.3.1 Distance function

In CFD, we want a mesh where the triangles are smallest at the key areas and

gradually increase in size as the distance from those key areas increases. For this to

be possible we need to define a distance function that can determine the sizes for size

tensors based on the vertex’s position relative to the key geometric entity in question.

We also need to define the rate at which the size tensors affected by the function will

grow as the distance increases.

Linear growth means that the rate is constant. Quadratic and cubic rates of

growth means that the rate of growth is small close to the source but as we move

away the rate of growth increases. Square root means that the rate of growth is high

close to the source and the rate slows down as we move away. The implementation

must take into account the different types of growth as well as other cases.

3.3.2 Curvature function

The reason for using curvature functions is because a triangular mesh will approximate

a curve into a polyline and we want to limit the loss of precision where the curvature

increases. In order to do this, we add more vertices on the curve where the curvature

is high, and less vertices where the curvature is small or null (if the curve is straight).

40

All vertices are on the curve while the mesh edges linking these vertices may not be.

See [15] for more details.

An example of a method to calculate the curvature of a polyline is to create a

circle that passes by the vertex in question and its two immediate neighbour vertices

on the same curve. The radius of this circle is inversely proportional to the curvature.

That is, the smaller the circle, the larger the curvature. This is illustrated in Fig. 3.5.

P

Figure 3.5: Curvature of a polyline at vertex P .

3.4 Metric orientation between two boundaries

When two boundaries in geometric domain are very close, the narrow opening between

the two can be a sensitive area when doing numerical simulations. Ideally, metric

tensors should be aligned with the nearest boundary. However, in this case both

boundaries should have an influence on metric tensor orientation.

The implementation of this idea must ensure that the orientation of a given metric

tensor follows the orientation of the two boundaries, but the closest boundary must

have more of an influence on the final orientation.

3.5 Object Oriented Remeshing Toolkit (OORT)

OORT is a program that receives metric tensors for all mesh vertices and converts

the input mesh into a new mesh that better suits the requirements specified by the

41

metric tensors. Because of the limitations explained in Section 2.2.6, it is impossible

for OORT to build a mesh that perfectly satisfies the metric tensors. In some cases

the tool may be forced to make some approximations, especially in areas where there

are extreme size differences between neighbouring vertices.

Because OORT cannot read size tensors, SmartMesh must convert its output to

metric tensors so that the data can properly be imported.

42

4 SmartMesh library

Any problem in computer science can be solved with another
level of indirection.

David Wheeler

4.1 Philosophy

The SmartMesh library contains all the tools necessary to set and modify the size

tensors of each vertex and output a field of metric tensors such that a remesher

such as OORT (Section 3.5) can adapt the mesh to the user’s requirements. The

primary components of the SmartMesh library are the mesh, the topological part of

the geometric model, the size functions and the algorithms.

However, the library does not drive the execution. It simply contains facilities to

help a calling program perform the necessary tasks. An example of such a program

that uses the SmartMesh library is the SmartMesh program described in Chapter 5.

4.2 Working environment

The creation of SmartMesh was facilitated by the use of many available tools that

helped build and document this library while also allowing interaction with other

programs.

43

4.2.1 Programming

SmartMesh is a library written in C++ on Fedora Linux 12. It takes advantage of

object-oriented (OO) capabilities provided by C++. It has 6400 lines of code in 46

files. The code is stored on the Mathematics and Computer Science Department’s

Subversion (SVN) server located at http://svn.cs.laurentian.ca.

The Fedora system was installed in Virtual Box within Windows 7. The virtual

PC setup allowed to do code editing in Fedora while doing other tasks simultaneously

in Windows.

The editor used for code generation is Eclipse. This tool was very useful because

of features such as automatic project-wide application of variable name changes and

auto-completion, as well as good colouring of various key words.

4.2.2 Visualization

SmartMesh outputs a field of metric tensors that can be used as input for a remesher

such as OORT in order to have the mesh modified appropriately. This field of metric

tensors can also be visualized. The primary visualization tool used was Vu, which

translates the input tensor for each vertex into a visible ellipse. The tensors could be

size tensors or metric tensors. This is very useful when debugging to make sure the

size and orientation of ellipses are correct. OORT outputs a modified mesh which

can also be visualized by Vu.

4.2.3 Documentation

The SmartMesh library makes use of Javadoc comments to document the code and

give information to other users. The doxygen program makes it possible to extract

Javadoc comments and object-oriented structures to output a full document in both

HTML and LATEX formats. The doxygen output for SmartMesh can be found in

Appendix C.

44

4.2.4 Logging

During the development of SmartMesh, the use of logging was important for debug-

ging errors and also for printing important information to ensure that the work done

by the SmartMesh library was correct.

Logging in SmartMesh is done using the cout command. When a program calls

the SmartMesh library it is responsible for indicating where to redirect the logging

output. By default the log messages are displayed on the screen, but they can be

redirected to a file. If the user does not want to use logging, he can redirect the

logging to /dev/null on Linux systems. This an easy, but inefficient, way to manage

logging. SmartMesh is five times faster when redirecting the logging to /dev/null

than when it outputs to a log file. Therefore a better management of logging should

be implemented.

4.3 Object-oriented structure

The SmartMesh library takes advantage of object-oriented concepts. The various

entities of the mesh and in the topological part of the geometric model are represented

as classes. This facilitates storage and documentation of the many properties needed

to be retained by each instance of each class.

4.3.1 Mesh representation

A triangular unstructured mesh is a planar graph composed of vertices and adjacencies

between vertices. Usually, files contains only a list of vertices and a list of triangles,

with each triangle being a list of references to three vertices. The SM MESH class (SM

for SmartMesh) is designed to hold a list of vertices, a list of triangles and a list

of edges. Other adjacencies between these entities can be stored if needed by some

algorithms.

One triangle has three vertices and three edges. Each edge has two vertices and

45

touches one triangle if it is a boundary edge, or two triangles if it is not a boundary

edge. Each vertex has an associated size tensor, a 2 × 2 symmetric positive definite

matrix, which indicates the mesh size.

4.3.1.1 Edge creation

The input file has a list of vertices and triangles, but usually has no edges. Therefore

they must be created from the information available. Since each triangle has three

vertices, a mesh edge can be created for each combination of two vertices in the

triangle. The three edges are (vertex 1, vertex 2), (vertex 2, vertex 3) and (vertex 3,

vertex 1).

Mesh edges belong to at least one triangle, if they are boundary edges, and two

triangles otherwise. Therefore, when creating edges from triangles it is possible to

visit the same combination of vertices twice. It is important to first check if a given

combination of vertices already exists in the mesh’s list of edges in order to avoid

duplicates.

4.3.1.2 Storage of mesh entities

The SM MESH class must store separate lists of triangles, edges and vertices. Standard

Template Library (STL) vectors are used for this storage. The use of vectors in this

situation is favorable because the mesh is static, meaning that it does not get modified

by the SmartMesh library. Vectors offer easy access of elements but have a high cost

for removal operations, but since the mesh is static this is not an issue in SmartMesh.

Since the vertices are provided by the input file in a specific order, we store in each

vertex its index in the mesh’s vector of vertices. This index is the vertex identifier.

Therefore, we can easily obtain a given vertex’s position in the list using its identifier.

By the same manner, each triangle in the file is not composed of three vertices, but

of three vertex identifiers.

46

4.3.1.3 Neighbourhood structure

Each vertex in the mesh has a list of pointers to its adjacent edges that link the

vertex to its immediate neighbour vertices. This structure makes it easy to traverse

the mesh and is ideal for the neighbour propagation techniques used throughout the

library.

4.3.2 Topological model representation

The topology of the geometric model contains the relations between entities of the

geometric model. Topological entities, in two dimensions, are faces, edges and ver-

tices. In three dimensions, there are also volumes. A topological face is bounded by

an outer loop of topological edges. If the geometric model contains holes, then each

hole is bounded by an inner loop of topological edges. Finally, each topological edge

is bounded by two topological vertices.

Be careful not confuse topological faces, edges and vertices with mesh triangles,

edges and vertices. If the context of a paragraph is about meshes, we will simply use

triangles, edges and vertices. If the context of a paragraph is about topology, we will

simply used faces, edges and vertices. If the context of the paragraph is about mesh

and topology, then the words edge and vertex must be specified to belong to either

the mesh or the topology.

The SM TOPOLOGICAL MODEL class implements the topological part of the geometric

model. A topological face has a STL vector containing identifiers that refer to the

topological edges that bound this face. A topological edge has the identifier that

refers to each of the two topological vertices that confine this edge. A topological

vertex has no descendants in this structure and therefore does not need to store the

identifier of other topological entities.

47

4.3.3 Mutual knowledge between mesh and topological model

Recall that the mesh is a discretization of the geometric model and that the mesh is

body-fitted. So each part of the mesh, triangles, edges and vertices, belongs to some

topological entities of the geometric model. The mesh given in the input file contains

this relation. Each mesh vertex in the input file has an identifier referencing to either

a topological vertex, a topological edge or a topological face. The same way, each

mesh triangle has an identifier referencing to a topological face. When building the

mesh edges, as explained in Section 4.3.1.1, an identifier to a topological edge or a

topological face must be attributed to the mesh edge.

Conversely, the SM TOPOLOGICAL MODEL class will contain the inverse relation.

Each topological entity, face, edge and vertex, will store all the mesh entities, tri-

angles, edges and vertices that belong to it. For topological faces, three STL vectors

are used to store the list of associated mesh triangles, mesh edges and mesh vertices.

This includes all mesh entities that belongs to the topological face and its boundaries.

For topological edges, two STL vectors are used to store the list of associated mesh

edges and mesh vertices. This includes all mesh vertices located on this topological

edge and the boundary mesh edges that link these mesh vertices together. For each

topological vertex, a single pointer to the corresponding mesh vertex is stored.

Recall that the geometric model is steady. There will be different meshes for a

given geometric model. In short, meshes will vary, but the geometric model will not.

When defining functions or algorithms to be applied on the mesh, it is easier to define

them using the topological entities of the geometric model. From there, the targeted

topological entities know their associated mesh entities and neighbour propagation

can begin (Section 2.2.5).

48

4.3.4 Size tensor representation

In SmartMesh the SM SIZE TENSOR class will not store the actual 2 × 2 positive

definite matrix, but rather its decomposition into eigenvectors and eigenvalues. The

two unit eigenvectors will be stored in a 2 × 2 rotation matrix while the eigenvalues

will be stored in two strictly positive size variables, the first corresponding to the first

eigenvector, while the second corresponds to the second eigenvector. If a size tensor

is really needed, then it is sufficient to multiply the rotation matrix by the diagonal

matrix composed of the eigenvalues, and then by the transpose of the rotation matrix

(see Eq. 3.3). If a metric tensor is needed, then it is sufficient to multiply the rotation

matrix by the diagonal matrix composed of the square of the inverse of the eigenvalues,

and then by the transpose of the rotation matrix (see Eq. 3.3).

In essence, the SM SIZE TENSOR class does not store a size tensor, but its decom-

position into eigenvectors and eigenvalues. There are two motivations behind this

choice.

First, the functions and algorithms, described later in this chapter, will compute

two directions, typically one perpendicular to a boundary and one parallel to the

boundary, and two sizes along those directions. This is the information stored in the

SM SIZE TENSOR class which makes it is easy to create an object of that class without

any computation.

The second motivation relates to the intersection of two size tensors described in

Section 3.2.2. The first thing that this algorithm needs is the decomposition into

eigenvectors and eigenvalues of the two input size tensors. Clearly, it is more conve-

nient that the SM SIZE TENSOR class stores the decomposition of a size tensor instead

of the size tensor itself.

49

4.3.5 Functions

In SmartMesh, functions serve as a bridge to translate geometric features of the

geometric domain into a physical size that can be used as inputs to generate size

tensors.

Depending on the type of functions, some attributes are construction parameters

and do not change during an algorithm’s execution, while other attributes are variable

depending on the context. Parameters must be provided for the constructor of the

corresponding function class, and an execute method has the variable attributes as

inputs before outputting the appropriate size value.

4.3.5.1 Distance function

The distance function class refers to Section 3.3.1. Parameters include the minimal

size, maximal size, maximal distance and exponent value.

The only variable attribute is the current distance between a vertex of the mesh

and a topological entity, which varies during the execution of an algorithm because

each vertex is at a different location in the mesh. The parameter dmax is the function’s

maximal distance, smin is the function’s minimal size, smax is the function’s maximal

size, e is the function’s exponent value and d is the input distance. The output size

s can be defined as

s(d) = smin +

(

d

dmax

)e

(smax − smin) .

If 0 ≤ d ≤ dmax, then smin ≤ s(d) ≤ smax.

4.3.5.2 Size projection function

This function is similar to the distance function, but the minimal size is variable and

must be supplied along with the local distance to compute the local size value.

This function is useful when size values s0 along a boundary are variable, and

ensures that at the maximal distance the size will be set to the maximal size.

50

The conversion from distance to size can be described as

s(d, s0) = s0 +

(

d

dmax

)e

(smax − s0) .

If 0 ≤ d ≤ dmax, then s0 ≤ s(d, s0) ≤ smax.

4.3.5.3 Curvature-to-size conversion

This function is responsible for translating a curvature into a physical size that will

be useful for the curvature of boundary algorithm in Section 4.3.7.2. Typically this is

only used along a boundary, and a size projection function is used for points between

the boundary and the max distance.

The user supplies a minimal size smin, a maximal size smax, as well as an error value

δ between a curve and its linear approximation. From there, a minimal curvature κmin

and maximal curvature κmax are computed. The minimal curvature corresponds to

maximal size, while the maximal curvature corresponds to minimal size. If the curve

is flat, the size should be infinite but will be bounded by smax. If the curve has a very

strong bend, the size should be very small but will be bounded by smin.

The variable attribute is the local curvature κ at a given point on the boundary.

This is supplied by the algorithm and the output is the size h(κ) of the segment that

has an error δ with the curve. See figure 4.1.

First, the radius r is calculated as 1/κ. The conversion from curvature to size is

given by

h(r(κ)) = 2
√

δ(2r − δ),

deduced from [17]. The output size h(κ) must be bounded such that smin ≤ h ≤ smax.

4.3.6 Algorithm representation

The main SM ALGORITHM class is an abstract class with the only shared property

being the execute method. This method has no parameters and triggers the full

51

P

r r

r

h/2
h/2

δ

Figure 4.1: A curve at the point P is approximated by the osculating circle of radius

r. The length h of the segment that has a maximal error δ with the circle.

execution of any algorithm. This gives inheriting classes the freedom of customizing

their construction inputs and class attributes.

A list of topological entities is to be provided at construction time. The construc-

tor of the algorithm in question will extract the associated mesh vertices for those

topological entities. The extracted mesh vertices will serve as starting points for the

algorithm. From there, neighbour propagation can be accomplished by traversing the

mesh through each vertex’s neighbouring edge list.

The caller of any algorithm sub-class needs only to call the execute method. This

will execute the algorithm in question from start to finish.

4.3.6.1 Uniform algorithm

This algorithm implementation refers to the definition in Section 2.2.10.1. The inputs

are the desired uniform isotropic size s and the topological entities where the user

wishes to apply this algorithm. The algorithm creates an isotropic size tensor of size

s for each inputted topological entity’s associated mesh vertices. An example of mesh

52

build from uniform size tensors is shown in Fig. 4.2.

X
Y

VU Z

Figure 4.2: Example of uniform mesh of size s.

Due to the fact that the algorithm assigns a constant size, there is no need for

any input functions and also no need for the application of neighbour propagation.

Here is the logic of the uniform algorithm.

Algorithm 4.1: Uniform Algorithm. Input: A topological entity E and the

isotropic size value s.

1: for all mesh vertices V belonging to topological entity E

2: Generate the isotropic size tensor M(s) using size value s.

3: Intersect M(s) with the size tensor MV at vertex V .

4: end

Here are some remarks about the computation of size tensors (line 2). The input

topological entity E of the geometric model can be any of the three types of topological

53

entity: vertex, edge or face. It does not matter. Each of the three types have a list

of associated mesh vertices.

The size tensors created on line 2 will be isotropic as shown in Section 3.1.7.2. This

means that the two eigenvalues receive the same value of s. The eigenvectors could

be any set of two unit perpendicular vectors. The usual choice is simply e1 = (0, 1)

and e2 = (1, 0).

4.3.6.2 Distance to vertex algorithm

This algorithm refers to the algorithm definition in Section 2.2.10.2. The inputs are

the topological vertex to be used as start point and the distance function which is

responsible for determining mesh size for vertices in relation to their distance from the

topological vertex. See Fig. 4.3 for a more detailed look at the effect of the distance

to vertex algorithm on a mesh.

VU X
Y
Z

Figure 4.3: Example output for distance to vertex algorithm.

Here is the logic of the distance to vertex algorithm.

54

Algorithm 4.2: Distance to vertex algorithm. Input: A topological vertex E and

a distance function with its parameters, amongst them dmax.

1: Push onto queue the mesh vertex associated to topological vertex E.

2: while queue not empty

3: Pop a vertex V from the queue.

4: Compute the distance d between V and E.

5: if d ≤ dmax then

6: Generate the isotropic size tensor M(d) using the size function.

7: Intersect M(d) with the size tensor MV at vertex V .

8: Push onto queue all neighbour vertices of V not already processed.

9: end

10: end

Here are some remarks about the algorithm. The input is a topological vertex E

of the geometric model. But for all topological vertices, SmartMesh has a pointer to

their unique associated mesh vertex.

Line 6 states that the distance d is used with the input distance function de-

scribed in Section 4.3.5.1 to compute a local isotropic size tensor M(d) as defined in

Section 3.1.7.2.

4.3.6.3 Common methods

The SM COMMON METHODS class serves as a container of methods that are required

by other classes. This technique removes code duplication. The removal of code

duplication reduces the risk of disaster when modifying this code because the change

would only have to be applied and tested one time. It is also easier to maintain

because all implementing classes will make use of the common code.

The only method in this class is a method that, given a mesh vertex V and a

55

mesh edge AB, calculates the distance d between the two entities (see Fig. 4.4). The

method is simply to project the vertex on the infinite line spanned by the segment.

If the projected point V ′ on the line is outside the segment AB, then the projected

point is snapped on the corresponding end vertex of the segment. The return values

are the actual distance d, the projection location of the vertex on the edge and the x

and y components of the corresponding vector between the vertex and its projection

on the edge.

V

V

V ′

VA

BV ′

d

V ′

d

d

Figure 4.4: Distance between a vertex V and an edge AB. V ′ is the perpendicular

projection of V on the line spanned by the edge. If the projection V ′ is outside the

edge, the closest point is the corresponding end of the edge.

This method is useful for the implementing classes which need to locate the nearest

edge of a boundary composed of many edges. The method is able to determine the

distance between the two entities. The projection location on one edge decides if this

edge is the closest. If the vertex projects inside the segment, then that edge is locally

the closest. Otherwise it might be a neighbouring boundary edge that is closest.

The algorithm moves from an initial guess edge towards the edge that minimizes the

distance, marching across the edges one by one.

56

4.3.6.4 Distance between two boundaries algorithm

As mentioned in Section 3.4, when two mesh boundaries are located close to one

another, it is necessary to provide a user with controls to manipulate the size and

orientation of mesh triangles in this region.

For this algorithm, the inputs are the two topological edges that form the two

boundaries used as sources for the execution, as well as two distance functions. An

example of the mesh resulting from this algorithm can be seen in Fig. 4.5.

VU X
Y
Z

Figure 4.5: Example of a dense mesh stretched and aligned between two nearby

boundaries.

Here is the logic for the distance between two boundaries algorithm.

Algorithm 4.3: Distance between two boundaries algorithm. Input: Two topo-

logical edges E1 and E2 and two size functions with their parameters, amongst them

dmax.

57

1: for all mesh vertices V belonging to topological edge E1

2: Compute distance d between V and E2.

3: if d ≤ dmax then

4: Push onto queue mesh vertex V .

5: Store information regarding localization of vertex V on topological edges E1

and E2.

6: Generate isotropic size tensor M(d).

7: Intersect M(d) with size tensor MV at vertex V .

8: Push onto queue all unprocessed neighbours of vertex V .

9: Break out of this loop.

10: end

11: end

12: while queue is not empty

13: Pop a vertex V from the queue.

14: Get a neighbour vertex Vn that is already processed.

15: Using Vn’s stored localization information, compute distance d1 between V and

E1.

16: Using Vn’s stored localization information, compute distance d2 between V and

E2.

17: Compute d as the sum of d1 and d2.

18: if d ≤ dmax then

19: Store information regarding localization of vertex V on topological edges E1

and E2.

20: Generate isotropic size tensor M(d).

21: Intersect M(d) with size tensor MV at vertex V .

22: Push onto queue all unprocessed neighbours of vertex V .

23: end

24: end

58

Here are some remarks about the computation of distance (lines 5, 14 and 19) and

computation of size tensor (line 6 and 20).

The input is a pair of topological edges E1 and E2 of the geometric model. But for

all topological edges, SmartMesh has the list of mesh vertices and mesh edges that

belong to the topological edges. Therefore, for SmartMesh, the topological edges E1

and E2 each correspond to a polyline in the geometric model. So, at line 14, computing

the distance d between V and the topological edge E1 or E2 is in fact computing the

distance d between V and a polyline. Computing the distance between a vertex and

a polyline consists to find the edge of the polyline closest to the vertex V . Each time

a distance is computed, the closest edge of the polyline is stored (line 5 and 19 in the

algorithm). Each time a distance is computed, the search of the closest edge is not

done over all the edges of the polyline, but with a neighbour search starting from an

edge known to be close (line 14 in the algorithm).

Lines 3 and 14 state that geometric features such as distance d, with two input

distance functions, will be used to compute a local size tensor M(d). This is not easy

and needs more explanations. There are three cases.

First, if the vertex V is located on topological edge E1, the distance to the topo-

logical edge, and so to the polyline that discretizes the topological edge, is zero.

However, this means that the distance between V and E2 is positive. In this case

the orientation of the mesh edge associated to E1 which is stored at V as closest

location on the polyline is used to compute the orientation of a vector which is to

be used in construction of a size tensor. Using one distance function described in

Section 4.3.5.1, a size can be computed in this direction. Here the distance d becomes

the distance between V and E2. Using one distance function, d is translated into a

size value which is used as the length of this vector. With the other distance function

described in Section 4.3.5.1 and with d, a second size and vector can be computed in

the direction perpendicular to the vector already computed. With these two vectors

59

and these two sizes, a size tensor can be computed as described in Section 3.1.7.1.

Second, if the vertex V is located on topological edge E2, the distance to the

topological edge, and so to the polyline that discretizes the topological edge, is zero.

However, this means that the distance between V and E1 is positive. In this case

the orientation of the mesh edge associated to E2 which is stored at V as closest

location on the polyline is used to compute the orientation of a vector which is to

be used in construction of a size tensor. Using one distance function described in

Section 4.3.5.1, a size can be computed in this direction. Here the distance d becomes

the distance between V and E1. Using one distance function, d is translated into a

size value which is used as the length of this vector. With the other distance function

described in Section 4.3.5.1 and with d, a second size and vector can be computed in

the direction perpendicular to the vector already computed. With these two vectors

and these two sizes, a size tensor can be computed as described in Section 3.1.7.1.

The final case is when the vertex V is not on the edge E1 or E2. The variable

V1 is the closest point of V at the distance d1, on the polyline that discretizes the

topological edge E1. The variable V2 is the closest point of V at the distance d2, on the

polyline that discretizes the topological edge E2. Using d as input to the two distance

functions, a size value can be computed in both normal and tangent directions. Now

that we have the necessary components, we can construct an anisotropic size tensor

as defined in Section 3.1.7.1.

In this case, the orientation of size tensors is influenced by the orientation of

the closest edge on each of the two boundaries. The final orientation is a weighted

calculation based on the given vertex’s proximity to each boundary. If the vertex is

situated very close to one of the boundaries, its orientation will be very close to the

orientation of the closest edge on that boundary. Let d1 be the vector between the

vertex V and its closest point on the topological edge E1, and let d1 be the length of

d1. In the same manner, let d2 be the vector between the vertex V and its closest

point on the topological edge E2, and let d2 be the length of d2. Then we can define

60

a weighted normal w to both topological edges as

w = d2

d1

d1

− d1

d2

d2

.

Note the minus in the previous equation. The normal n is simply the unit weight

normal n = w/‖w‖. See Fig. 4.6 for an intuitive visual description on how the

computation of n is done. Perpendicular to the normal vector n, we can define a

tangent direction t.

P

d2

d1

E2E1

n

−d1
d2

d2

w
d2

d1

d1

d2/d2
d1/d1

Figure 4.6: Orientation of a size tensor based on its proximity to two boundaries.

Using distance functions, size can be computed in both normal and tangent direc-

tions. Now that we have the necessary components, we can construct an anisotropic

size tensor as defined in Section 3.1.7.1.

4.3.6.5 Distance to imaginary polyline algorithm

Sometimes a problem requires that geometric properties be calculated somewhere on

a topological face. That is, the characteristics are not on a topological vertex or edge.

The implementation of such an algorithm can be challenging because it is easy and

convenient to associate mesh vertices of a topological edge or vertex and use them as

start points for an algorithm execution. However in this case that cannot be done.

This algorithm has four inputs: the polyline which consists of user-specified vertex

coordinates, two distance functions and a size projection function. One distance

61

function is used to determine the length of the vector parallel to the imaginary polyline

for mesh vertices on the imaginary polyline. This length increases proportionally to

the distance from the first vertex on the polyline.

The other distance function determines the length of the vector perpendicular to

the imaginary polyline. The length increases proportionally to the distance from the

closest segment on the imaginary polyline.

The projection function is used to determine the length of the vector parallel to

the imaginary polyline for mesh vertices which are not on the imaginary polyline.

The base length is the vector length at the closest imaginary polyline segment. This

length increases proportionally to the distance between the mesh vertex in question

and the closest imaginary polyline segment.

An example of the mesh resulting from the use of distance to imaginary polyline

algorithm can be seen in Figure 4.7. The goal in this figure was to create a mesh

suitable for a wake starting at the trailing edge of a blade.

Here is the logic for the distance to imaginary polyline algorithm.

Algorithm 4.4: Distance to imaginary polyline algorithm. Inputs: the polyline

P , a topological face E and three size functions with their parameters, amongst them

dmax.

1: Set Vmin as the variable which holds the value of the closest mesh vertex of the

face E to the polyline P .

2: Set dmin as the variable which holds the value of the smallest distance computed

so far.

3: for all mesh vertices V in topological face E

4: for all edges Pe in polyline P

5: Compute distance d between V and Pe.

6: if d ≤ dmin then

7: Store Pe in Pemin
.

62

X
Y

VU Z

Figure 4.7: Example of a mesh produced with the distance to imaginary polyline

algorithm.

8: end

9: end

10: if mesh vertex V is closer to polyline P than Vmin then

11: Set Vmin to V .

12: end

13: end

14: Push onto queue vertex Vmin.

15: while queue not empty

16: Pop a vertex V from the queue.

17: Get a neighbour vertex Vn that is already processed.

18: Using Vn’s localization information, compute distance d between V and P .

19: if d ≤ dmax then

20: Store information regarding localization of vertex V on polyline P .

63

21: Generate anisotropic size tensor M(d) using size functions.

22: Intersect M(d) with the size tensor MV at vertex V .

23: Push onto queue all unprocessed neighbour vertices of V .

24: end

25: end

Here are some remarks about the computation of distance (lines 17 and 20) and

computation of size tensors (line 21).

At line 20, computing the distance d between vertex V and a polyline P consists

to find the edge of the polyline closest to the vertex V . Each time a distance is

computed, the closest edge of the polyline is stored (line 17 in the algorithm). Each

time a distance is computed, the search of the closest edge is not done over all the

edges of the polyline, but with a neighbour search starting from an edge known to be

close (line 20 in the algorithm).

Line 21 states that geometric features such as distance d, with two input distance

functions, will be used to compute a local size tensor M(d). This is not easy and

needs more explanations.

Since the polyline is not part of the geometric model, it is highly unlikely that a

mesh vertex will be exactly on the polyline, meaning that d will be non zero. The

point V ′ is the closest point of V at the distance d on the polyline P . The vector

from V ′ to V defines a normal direction n. A size in this direction, for a vertex

at distance d of the boundary, is computed with the distance function described in

Section 4.3.5.1.

Perpendicular to this normal direction n, we can define a tangent direction t. The

size in this tangent direction is computed in three steps. First, we need to compute

the curvilinear abscissa s′ of the point V ′ on the polyline. The first vertex P0 on

the polyline is at curvilinear abscissa s = 0. Each vertex Pj on the polyline is at

64

curvilinear abscissa sj given by

sj =

j−1
∑

i=0

‖Pi+1 − Pi‖

which is the sum of the lengths of the previous edges prior to Pj. Knowing that

the projected vertex V ′ on the polyline belongs to the edge PjPj+1, and knowing the

curvilinear abscissa sj of the vertex Pj, we can easily compute the curvilinear abscissa

s′ of V ′.

Second, a distance function with its parameters will transform curvilinear abscissa

s′ into a size in the tangent direction at vertex V ′. Finally, this size value at vertex

V ′ on the polyline can be extended inside the domain at vertex V , at the distance d

of the polyline, using the size projection function described in Section 4.3.5.2.

4.3.7 Boundary algorithm

This class is an abstract class that has common properties for the distance to boundary

and curvature of boundary algorithms. Because the two algorithms have a lot in

common, this class is more of a container of common code that is shared by the

inheriting sub-classes. This way, if a modification needs to be made, it only needs to

be made in one file rather than having to make the same change in multiple files.

For each vertex, we want to retain characteristics to share with neighbours and

decrease the execution time of the algorithm. A common technique is to create an

array mapping each vertex to a property. However, there are a number of problems

with this approach. First, the algorithm only uses a sub-set of mesh vertices so there

would be a lot of wasted space with the array approach. And second, if we want to

store multiple values and of different data types, we need a better solution.

The solution is to use a STL map. Each map entry is composed of a key and a

value. The key is a pointer to a mesh vertex. We will use the vertex identifier which

is its index in the mesh. The value is a special inner-class which has the necessary

attributes.

65

The inner class has several roles. It must hold a pointer to the closest boundary

edge to assist in neighbour propagation, and it also has to hold the values computed

during the algorithm execution because it is possible to visit the same vertex multiple

times. By holding these computed values they can be used for comparison and are

used at the end of the execution to compute new size tensors.

4.3.7.1 Distance to boundary algorithm

This algorithm refers to algorithm definition in Section 2.2.10.4. The first input is

the topological edge that forms the polyline in question. Also, there are two distance

functions inputted into this algorithm.

An example of a mesh created using the distance to boundary algorithm can be

seen in Fig. 4.8.

X
Y

VU Z

Figure 4.8: Example of a mesh created using the distance to boundary algorithm.

Here is the logic for the distance to boundary algorithm.

66

Algorithm 4.5: Distance to boundary algorithm. Input: The topological edge E

and two distance functions with their parameters, amongst them dmax.

1: for all mesh vertices V belonging to topological edge E

2: Set d = 0 because this vertex is on a boundary.

3: Generate anisotropic size tensor M(0) using the two size functions.

4: Intersect M(0) with the size tensor MV at vertex V .

5: Store information regarding localization of vertex V on topological edge E.

6: Push onto queue all neighbour vertices of V not on E.

7: end

8: while queue is not empty

9: Pop a vertex V from the queue.

10: Get neighbour vertex Vn that is already processed.

11: Using Vn’s stored localization information, compute the distance d between V

and E.

12: if d ≤ dmax then

13: Store information regarding localization of vertex V on topological edge E.

14: Generate anisotropic size tensor M(d) using size functions.

15: Intersect M(d) with the size tensor MV at vertex V .

16: Push onto queue all unprocessed neighbours of vertex V .

17: end

18: end

Here are some remarks about the computation of distance (lines 5, 10 and 13) and

the computation of size tensors (lines 3 and 14).

The input is a topological edge E of the geometric model. But for all topological

edges, SmartMesh has the list of mesh vertices and mesh edges that belong to the

topological edge. So, for SmartMesh, a topological edge E in the geometric model

corresponds to a polyline. So, at line 10, computing the distance d between V and

67

the topological edge E is in fact computing the distance d between V and a polyline.

Computing the distance between a vertex and a polyline consists to find the edge of

the polyline closest to the vertex V . Each time a distance is computed, the closest

edge of the polyline is stored (line 5 and 13 in the algorithm). Each time a distance is

computed, the search of the closest edge is not done over all the edges of the polyline,

but with a neighbour search starting from an edge known to be close (line 10 in the

algorithm).

Lines 3 and 14 state that geometric features such as distance d, with two input

distance functions, will be used to compute a local size tensor M(d). This is not easy

and needs more explanations. There are two different cases. The first case, when the

distance is zero in line 3, and the second case, when the distance is positive in line 14.

First, if the vertex V is on the topological edge E, the distance to the edge E, and

so to the polyline that discretize the edge, is zero. The orientation of the mesh edge

associated to E which is stored at V as closest location on the polyline is used to

compute the orientation of a vector which is to be used in construction of a size tensor.

Using one distance function described in Section 4.3.5.1, a size can be computed in

this direction. As the distance is zero, this size is the minimum size set in this distance

function.

With the other distance function described in Section 4.3.5.1, a second size and

vector can be computed in the direction perpendicular to the vector already computed.

As the distance is zero, this size is the minimum size. With these two directions and

these two sizes, a size tensor can be computed as described in Section 3.1.7.1.

The second case is when the vertex V is not on the edge E, and so the distance d

is strictly positive. Let V ′ be the closest point of V at the distance d, on the polyline

that discretizes the input topological edge. The vector from V ′ to V defines a normal

direction n. A size in this direction, for a vertex at distance d of the boundary, is

computed with the distance function described in Section 4.3.5.1.

Perpendicular to this normal direction n, we can define a tangent direction t. A

68

size can be computed in the tangent direction t using the distance function described

in Section 4.3.5.1.

Now that we have the necessary components we can compute a new size tensor

as described in Section 3.1.7.1.

4.3.7.2 Curvature of boundary algorithm

This algorithm is very similar to the distance to boundary algorithm. The difference,

in terms of the inputs, is that this algorithm has three functions: a distance function,

a curvature-to-size function and a size projection function.

We need to evaluate the curvature of a curve at any point. See Fig. 4.9 for a

detailed image. The curve c is typically a curve from the geometric model. The geo-

metric model is discretized by a triangular mesh therefore the curve c is approximated

by piecewise linear edges forming a polyline p.

P−1

P0

P1

r

r
C

r
p

c

Figure 4.9: Approximation of the curvature of a discretized curve by computing the

circle that passes through three points.

Let P0 be the vertex of the polyline where we want to compute the curvature

69

while P−1 and P1 are adjacent vertices to the vertex P0 that belong to the curve c.

Let x−1, x0 and x1 be the respective x-coordinates for the three vertices and y−1, y0

and y1 be the respective y-coordinates for the three vertices.

The curvature at vertex P0 is defined as the inverse of the radius of the tangent

circle to the curve at P0. The tangent circle to the curve at P0 is approximated by

the circle that goes through the points P−1, P0 and P1. To define this circle, we need

to compute its center C of coordinates (xC , yC).

This center C is at equal distance to the points P−1, P0 and P1. So this center

must satisfy the equation

‖C − Pi‖
2 = ‖C − Pj‖

2

(xC − xi)
2 + (yC − yi)

2 = (xC − xj)
2 + (yC − yj)

2

where −1 ≤ i < j ≤ 1. This equation can be rewritten as

xC(xj − xi) + yC(yj − yi) =
1

2
(x2

j + y2
j − x2

i − y2
i).

From this equation and with all combinations of integer values of i and j, we obtain

the following system of three equations and two unknowns










x0 − x−1 y0 − y−1

x1 − x−1 y1 − y−1

x1 − x0 y1 − y0















xC

yC



 =
1

2











x2
0 + y2

0 − x2
−1 − y2

−1

x2
1 + y2

1 − x2
−1 − y2

−1

x2
1 + y2

1 − x2
0 − y2

0











.

This system has more equations than unknowns. It may have no solution and we

may find only a least-squares solution using a QR decomposition. But in fact, the

three equations are consistent up numerical round-off error and the third equation is

a linear combination of the first two. So we can ignore one row and simply solve a

2 × 2 system.

Now that we have the center, it is easy to calculate the radius r as the distance

between the center C and any of the three points. The curvature κ can be calculated

as

κ =
1

r
.

70

The normal vector n at vertex P0 can be calculated as

n =
C − P0

r
.

The normal and curvature exist for any interior points of a sufficiently smooth curve

c. But now that this curve is approximated by a polyline p, the previous method

gives only values of normal and curvature at vertex locations. What if we want

values somewhere between the vertices? The solution used, and also the easiest one,

is simply to do linear interpolation.

Figure 4.10 shows an example of what we want the curvature of boundary algo-

rithm to accomplish. Note that the edges are smaller where the curvature is higher

around to the leading edge of the blade.

X
Y

VU Z

Figure 4.10: Example of a mesh produced by the curvature of boundary algorithm.

One obstacle in the implementation of this algorithm is the case of vertices at

each end of a curve. These mesh vertices always corresponds to topological vertices

of the geometric model. Mathematically the curvature is not defined at the ends of

71

the curve, however in SmartMesh there is still one size tensor for each vertex in the

mesh. Therefore, it is necessary to define a curvature for these points so that the

algorithm can be applied consistently.

In the case where the curve ends, we simply copy the curvature value of the

neighbouring vertex on that curve. However, in practice it is possible for two different

curves to end at the same vertex. Based on the algorithm, the topological point will

select its two neighbours on the boundary in question, and the curvature is calculated.

Unfortunately, this is not feasible because the two curves can have a very different

orientation (see Fig. 4.11 where two boundaries are about perpendicular at their

intersection).

X
Y

VU Z

Figure 4.11: Two curves having a different orientation meeting at a common topo-

logical vertex.

Such extreme changes in the orientation of the two curves at the topological vertex

leads to extremely high curvature values and therefore abnormally small triangles in

that region. The lack of consistency in the environment can lead to undesired results.

72

Currently, the solution for such topological vertices is to have its size tensor orien-

tation and size determined by the average orientation and size of the two neighbouring

vertices on the boundary in question.

Here is the logic for the curvature of boundary algorithm.

Algorithm 4.6: Curvature of boundary algorithm. Input: A topological edge E

and three size functions with their parameters, amongst them dmax.

1: for all mesh vertices V belonging to topological edge E.

2: Compute and store the curvature κ and normal n at vertex V .

3: end

4: for all mesh vertices V belonging to topological edge E

5: Set d = 0 because this vertex is on the boundary.

6: Retrieve curvature κ and normal n at this vertex.

7: Generate the size tensor M(n, κ, 0) using size functions.

8: Intersect M(n, κ, 0) with the size tensor MV at vertex V .

9: Store information regarding localization of vertex V on topological edge E.

10: Push onto queue all neighbour vertices of V not on E.

11: end

12: while queue is not empty

13: Pop a vertex V from the queue.

14: Get a neighbour vertex Vn that is already processed.

15: Using Vn’s stored localization information, compute the distance d between V

and the topological edge E.

16: if d ≤ dmax then

17: Store information regarding localization of vertex V on topological edge E.

18: Generate the size tensor M(n, κ, d) using size functions.

19: Intersect M(n, κ, d) with the size tensor MV at vertex V .

20: Push onto queue all unprocessed neighbour vertices of V .

73

21: end

22: end

Here are some remarks about the computation of distance (lines 9, 15 and 17) and

the computation of size tensors (lines 7 and 18).

The input is a topological edge E of the geometric model. But for all topological

edges, SmartMesh has the list of mesh vertices and mesh edges that belongs to the

topological edge. So, for SmartMesh, a topological edge E in the geometric model

corresponds to a polyline. So, at line 15, computing the distance d between V and

the topological edge E is in fact computing the distance d between V and a polyline.

Computing the distance between a vertex and a polyline consists to find the edge of

the polyline closest to the vertex V . Each time a distance is computed, the closest

edge of the polyline is stored (lines 9 and 17 in the algorithm). Each time a distance is

computed, the search of the closest edge is not done over all the edges of the polyline,

but with a neighbour search starting from an edge known to be close (line 15 in the

algorithm).

Lines 7 and 18 state that geometric features such as normal n, curvature κ and

distance d, with three input functions, will be used to compute a local size tensor

M(n, κ, d). This is not easy and needs more explanations. There are two different

cases. The first case, when the distance is zero in line 7, and the second case when

the distance is positive in line 18.

First, if the vertex V is on the topological edge E, the distance to the edge E, and

so to the polyline that discretize the edge, is zero. From results of this section, we can

compute the normal n to the polyline at vertex V and the curvature κ, again at vertex

V . Given the normal, we can deduce the tangent vector t perpendicular to the normal.

Given the curvature, with a curvature to size function described in Section 4.3.5.3,

a size can be computed in the tangent direction. With the other distance function

described in Section 4.3.5.1, a size can be computed in the normal direction. As the

74

distance is zero, this size is the minimum size. With these two directions and these

two sizes, a size tensor can be computed as described in Section 3.1.7.1. Note that

in this case, we only need two functions to transform geometric characteristics of the

boundary into a size tensor.

The second case is when the vertex V is not on the edge E, and so the distance

d is strictly positive. Let the point V ′ be the closest point of V at the distance d,

on the polyline that discretizes the edge. The vector from V ′ to V defines a normal

direction n. A size in this direction, for a vertex at distance d of the boundary, is

computed with the distance function described in Section 4.3.5.1.

Perpendicular to this normal direction n, we can define a tangent direction t.

From results of this section, we can compute the curvature κ at vertex V ′, which is

on the boundary. Given this curvature, with the size projection function described

in Section 4.3.5.2, a size can be computed in the tangent direction, on the boundary.

This size, at vertex V ′ on the boundary, can be extended inside the domain, at vertex

V at the distance d, using the size projection function described in Section 4.3.5.2.

Now that we have the necessary components we can compute a new size tensor

as described in Section 3.1.7.1.

75

5 SmartMesh program

Programming today is a race between software engineers
striving to build bigger and better idiot-proof programs, and
the Universe trying to produce bigger and better idiots. So
far, the Universe is winning.

Rich Cook

5.1 Technical description

SmartMesh is also a program that calls the SmartMesh library. It is composed of 5

files totalizing 1500 lines of C++ code. The interface is a simple command line. It

uses the C++ open source tclap library11 to parse the command line. It uses the

C++ open source libconfig library12 to parse the configuration file.

The SmartMesh program uses the pirate library. Pirate is an in-house CAD

system. It is a C++ library that reads, stores, manipulates and writes all the data

used in numerical simulations. The data includes a CAD model with the topolog-

ical model and the geometric model, two- and three-dimensional meshes, and solu-

tions composed of scalars, vectors and tensors. It was developed mainly by François

Guibault and Paul Labbé at École Polytechnique de Montréal from 1993 until now.

It has now 111 000 lines of codes in 391 files.

11Available at tclap.sourceforge.net.

12Available at sourceforge.net/projects/libconfig.

76

5.2 Philosophy

The SmartMesh program is to be the bridge that links the user to the SmartMesh

library defined in Chapter 4. Its role is to provide the user with facilities that allow

to translate his knowledge into a personalized execution that will drive the mesh

generation to produce a suitable mesh for the user’s specific needs.

Although this program allows for customized executions, this is not a requirement.

Another person could write a different program that is specific to a single geometric

domain or a single application domain. Using this approach could make user training

easier but the software would not be as flexible as the SmartMesh program.

The SmartMesh program is dependent of the CAD library pirate. This library

can read from a file, store in memory, manipulate and write in a file, a geometric

model and the triangular unstructured mesh that discretizes the geometric model. In

particular, the SmartMesh program will use the pirate library to read a file that

contains the geometric model and extract the topological part. The SmartMesh

program will also use the pirate library to read a file that contains the mesh and

extract the list of vertices and the list of triangles. Finally, the field of metric tensors

computed by the SmartMesh library will be written in a file using the pirate format.

A different program could interface with a different CAD library provided that the

data is translated into SmartMesh internal format.

Recall that the SmartMesh library has no mechanism of execution. A calling

program must be executed and make use of the library. This program is responsible

for translating the inputs into SmartMesh library entities in order to solve the user’s

problem.

5.3 Configuration

While it is easy to provide the input data necessary to create the mesh structure and

topological model in the SmartMesh library, it is not as easy to translate the user’s

77

knowledge and requirements into a customized execution that solves the problems of

a given application domain.

In order to solve this problem one must give the user an interface which allows the

user to set the order of algorithms to be executed with their respective parameters.

A configuration text file can be used to receive the user’s inputs which can then

be read by the SmartMesh program to translate these inputs into a personalized

execution. This configuration file must follow a specific syntax and provide key words

that SmartMesh can read. Two options of configuration file formatting are XML

and libconfig.

5.3.1 XML

Extended Markup Language (XML) is a syntax extended from Hypertext Markup

Language (HTML) that encodes documents. Values are set by including an opening

tag, one or more values, and a corresponding closing tag. The basic notation for XML

is

<VARIABLE NAME> VALUE </VARIABLE NAME>.

Among its many uses, XML is used to create configuration files to set parameters

for executions. Also, there exists many C++ libraries to parse XML files. One major

disadvantage to using XML is that documents tend to become full of text due to the

presence of tags. This hurts readability and can make a large configuration file more

difficult to modify.

5.3.2 libconfig

Libconfig is an open source C++ library used for parsing configuration files. It is

part of the standard distributions of Linux but is also available for most systems.

Contrary to XML, libconfig offers a more readable syntax that looks a lot like a

programming language.

78

libconfig provides a more clean grammar which reads itself in a way similar to

a sentence in the English language. The basic notation for Libconfig is

VARIABLE NAME = VALUE;

Values in libconfig can be expressed in many different formats, including numerical,

text, lists of values and even more complex structures containing multiple types of

values. An example of libconfig syntax can be found in Fig. 5.1.

1 CREATE_REGIONS =

2 (

3 { NAME = "CornerInlet"; TOPOLOGICAL_ENTITIES = ([1, 2]); },

4 { NAME = "CornerOutlet"; TOPOLOGICAL_ENTITIES = ([3, 4]); },

5 { NAME = "AllCorners"; TOPOLOGICAL_ENTITIES = ([1, 2], [3, 4]); },

6 { NAME = "Inlet"; TOPOLOGICAL_ENTITIES = ([11]); },

7 { NAME = "Outlet"; TOPOLOGICAL_ENTITIES = ([12]); },

8 { NAME = "Walls"; TOPOLOGICAL_ENTITIES = ([11, 12, 13, 14]); },

9 { NAME = "Fluid"; TOPOLOGICAL_ENTITIES = ([100]); }

10);

Figure 5.1: Example of configuration file using the libconfig format.

In SmartMesh, we use libconfig to define the parameters of execution. While

libconfig is able to parse the configuration file into tokens and associated val-

ues, these tokens have no context. An additional reader must be created on the

SmartMesh end to convert these tokens and values into a full execution of the pro-

gram.

In the example in Fig. 5.1, we are defining regions composed of various topological

entities of the geometric domain. These regions are defined as a list of entries, each

having a name and an array of topological entity identifiers.

Additionally, we must define the functions and algorithms to be used during the

execution. Functions and algorithms are also defined as lists with each entry con-

79

taining the necessary attributes for constructor of the corresponding classes. For

additional details on the SmartMesh libconfig syntax see Appendix A.

It is important to note that the contents in these lists are up to the user. That is,

the user can control the execution.

5.3.3 Advantages of configuration file

There are many advantages to using this approach to configuring the execution. By

allowing the user to choose which algorithms to execute and their respective parame-

ters, the user is able to achieve the result that he desires. Two different configuration

files can be created for the same geometric domain, with each file leading to a different

result. Thus, the intelligence in SmartMesh comes from the user.

5.3.4 Preprocessor

SmartMesh has the capability to use the C preprocessor (cpp) on configuration files

which allows users to make use of preprocessor directives such as #define. By al-

lowing users to create such labels associated to values, it is possible to simulate the

use of reusable variables in programming where a variable can be referenced by its

name and the corresponding value is used in its place. Therefore, the same label

can be invoked many times in a configuration file and the preprocessor will copy the

corresponding value everywhere that it occurs in the file.

5.4 Execution of SmartMesh library

5.4.1 SmartMesh input data

The SmartMesh program receives two pirate files and one libconfig file. One

pirate file contains a two-dimensional geometric model with the topological part

and the geometric part. The SmartMesh program will extract the topological part

80

and will pass it to the SmartMesh library. The other pirate file contains a two-

dimensional mesh that discretizes the geometric model. The SmartMesh program

will extract the list of vertices, the list of triangles, the corresponding identifiers to

topological entities and will pass these information to the SmartMesh library. Once

the mesh and geometric model are created in the SmartMesh library, the program

can begin executing algorithms with their parameters, as specified in the libconfig

configuration file, in order to create an output field of metric tensors that can be

given to a remesher such as OORT to create a new mesh.

Algorithm 5.4.1 is the general procedure for inputting data into SmartMesh prior

to executing algorithms.

Algorithm 5.1: SmartMesh program. general layout of the program.

1: Read pirate file with the geometric model.

2: Read pirate file with the mesh.

3: Assert that the geometric model and mesh are two-dimensional.

4: Extract mesh vertices, their coordinates and their associated identifier to a topo-

logical entity.

5: Extract mesh triangles, their three pointers to vertices and their identifier to a

topological entity.

6: Extract topology with topological faces, edges and vertices from the geometric

model.

7: Create a SmartMesh SM TOPOLOGICAL MODEL object from extracted topology.

8: Create a SmartMesh SM MESH object from extracted vertices and triangles.

9: Create mesh edges from the mesh triangles.

10: Create dual links between mesh entities (triangles, edges and vertices) and topo-

logical entities (faces, edges and vertices)

11: Read libconfig configuration file.

12: Execute algorithms with their parameters, as described in the configuration file.

81

13: Write in a pirate file the metric tensors, one for each vertex of the input file.

In the previous algorithm, additional details must be given regarding line 5. It

is assumed that meshes will be two-dimensional, triangular and unstructured. If the

input mesh contains some quadrilaterals, then, on the fly, each quadrilateral is decom-

posed into two triangles, and these two triangles will be passed to the SmartMesh

library. SmartMesh library deals only with triangles. Suppose that the vertices of a

quadrilateral are V1, V2, V3 and V4. Then the first triangle will be composed of the

vertices V1, V2 and V3, and the second triangle will be composed of the vertices V1,

V3 and V4.

In the previous algorithm, line 9 also needs more comments. Usually, pirate

mesh files do not includes mesh edges. It is the duty of SmartMesh to build them

from the triangles. This is not an obvious task, and therefore must be described in

the following algorithm.

Algorithm 5.2: BuildEdges Algorithm. The input is the list of mesh triangles,

each of them with their three pointers to vertices.

1: for all triangles T

2: Retrieve the vertices V1, V2 and V3 of the triangle T .

3: for edge = 1, 2, 3

4: Compute i = (edge − 1) mod 3 + 1

5: Compute j = edge mod 3 + 1

6: Search an edge composed of vertices Vi and Vj in the mesh’s list of edges

7: if the search fails then

8: Create E as a new edge composed of vertices Vi and Vj

9: Set left triangle of edge E to T

10: Add E to mesh’s list of edges

11: Add Vj to neighbour list of Vi

12: Add Vi to neighbour list of Vj

82

13: else

14: Retrieve from the mesh’s list of edges the edge E composed of vertices Vi

and Vj

15: Set right triangle of edge E to T

16: end

17: end

18: end

5.4.1.1 SmartMesh output data

Once the SmartMesh execution is complete, a field of metric tensors, one for each

mesh vertex, is written in an output pirate file. These metric tensors represent the

desired size, stretch and orientation for the mesh to be built. This information can

be visualized by a software such as Vu or given to a remesher such as OORT in order

to create a mesh that satisfies as much as possible the information contained in the

field of metric tensors.

5.4.2 Layer

Layer is a program that inserts quadrilateral structured grids around topological

edges. In order to make room for this new grid, existing mesh vertices, edges and

triangles must be pushed away from the boundaries. Since there is less space than

previously, the vertices will be squeezed together more closely and triangles will be

more stretched. In a post-processing step, each quadrilateral could be divided into

two triangles. An example of a mesh with and without the added layers is shown in

Fig. 5.2.

The goal of adding a structured layer of quadrilaterals is to have very long, thin

and perpendicular elements aligned with boundaries. This is very critical in CFD

for turbulence modeling. High Reynolds flows have very thin boundary layers and an

83

VU X
Y
Z VU X

Y
Z

Figure 5.2: Example of mesh with and without an added structured layer of quadri-

laterals.

appropriate mesh close to the boundaries is mandatory to achieve certifiable numerical

simulations.

5.5 SmartMesh script

The SmartMesh program can be executed to translate the inputs and user knowl-

edge into SmartMesh library components and execute a series of algorithms with

customized parameters. The output field of metric tensors can be inputted into

OORT in order to build a new adapted mesh. However, this is not sufficient to

create a mesh that fully captures the user’s requirements.

Note that the output field of metric tensors from the SmartMesh program exe-

cution represents the desired size, stretching and orientation of the mesh triangles at

each mesh vertex. What if this mesh is very bad and coarse? When there is a large

distance between vertices and their neighbours, what does the remesher program do

in the space between those vertices where no metric tensor is defined?

Typically the remesher program will resolve this problem by applying a mesh

size in this space by interpolating values form nearby vertices. But if the distance

between neighbouring vertices is large, this is not an accurate solution. Figure 5.3

shows that the adapted mesh after a single iteration of the SmartMesh program does

84

not satisfy the user’s requirements. In particular, see the wake to the right of the two

blades where a line of precise and stretched triangles should be located. Instead, we

get inconsistent application of the algorithm because OORT has insufficient metric

tensors available to give an accurate result.

VU
Y
Z X VU

Y
Z X

Figure 5.3: Initial mesh and corresponding adapted mesh following SmartMesh pro-

gram execution.

What if SmartMesh could be re-executed with the newly adapted mesh using

the same execution parameters? Surely, this would create a new field of metric ten-

sors which OORT can use to once again create a new adapted mesh. The iterative

approach of re-executing the SmartMesh program using the latest adapted mesh as

input helps the process converge towards a final mesh that satisfies the user’s require-

ments specified in the libconfig configuration file.

The SmartMesh script is a script that takes advantage of the iterative approach.

This is a 300-line Bourne shell script which calls the SmartMesh program several

times, each time using the latest adapted mesh.

5.5.1 Shell script usage

SmartMesh.sh

--OORT-config-file=<file>

--SmartMesh-config-file=<file>

85

--Number-of-iterations=<int>

Default value = 1

--Debug=<0|1>

1 for log output

0 for no output (default)

--Use-Layer=<0|1>

1 to use of Layer program

0 to skip Layer (default)

--Geometric-model-file=<file>

--Mesh-file=<file>

The OORT-config-file parameter is a link to the file containing the configuration

for OORT to use.

The SmartMesh-config-file parameter is the configuration in libconfig format

to be used by SmartMesh. This contains the customized instructions specified by

the user.

The Number-of-iterations is the amount of times that the script will execute

SmartMesh and OORT .

The Debug parameter tells to SmartMesh to output a log file if set to “1”, and

nothing otherwise.

The Geometric-model-file parameter is the pirate format file that contains

the geometric model of the computational domain.

The Mesh-file parameter is the pirate format initial mesh to be given to

SmartMesh.

The Use-Layer parameter is a switch that will call the program “Layer” if set to

“1”, and otherwise will skip this step.

5.5.2 Command-line output

[eric@Eric-Fedora test1] smartmesh

86

--OORT-config-file=oort.cfg --SmartMesh-config-file=config1.txt \

--Number-of-iterations=5 --Geometric-model-file=geometrie.pie \

--Mesh-file=maillage_ini.pie

1- Parse command line entries

Begining of a script that performs a big loop over the

solver and the mesher. This script should end with:

---> HAPPY END OF THE BIG LOOP <---

If it is not the case, then the script failed......

Date of the begining: Sat Mar 19 19:43:18 EDT 2011

Current directory: /home/eric/SmartMesh/apps/PirateCommandLine/tests/test1

Current computer: Linux Eric-Fedora 2.6.32.26-175.fc12.x86_64 #1 \

SMP Wed Dec 1 21:39:34 UTC 2010 x86_64 x86_64 x86_64 GNU/Linux

BEGINING THE BIG LOOP

Doing iteration 001

Doing iteration 002

Doing iteration 003

Doing iteration 004

Doing iteration 005

ENDING THE BIG LOOP

End of this script at: Sat Mar 19 19:43:49 EDT 2011

The size of this directory is now 12444 kilo-bytes...

---> HAPPY END OF THE BIG LOOP <---

87

5.5.3 SmartMesh and OORT working together

In an execution, SmartMesh and OORT work together to iteratively refine the mesh

into the result that the user desires. SmartMesh outputs a metric tensor for all

mesh vertices. This becomes the input for OORT , which uses the metric tensors as

a guide to adapt the mesh. The new mesh outputted by OORT serves as an input

for the next SmartMesh program execution while using the same configuration file.

Since OORT cannot perfectly conform to the outputted field of metric tensors, it is

necessary to make multiple iterations of executing SmartMesh and then OORT in

order to converge towards the correct answer.

5.5.4 Logic of SmartMesh script execution

Here we can see the logic of a SmartMesh execution. In essence, the output of

SmartMesh program is the input of OORT , and the output of OORT is the input

of SmartMesh. This cycle continues for the amount of iterations desired by the user.

Algorithm 5.3: SmartMesh.sh. Input: a geometric model (with topological and

geometrical parts) and an initial mesh that discretizes the geometric model. Output:

an unstructured triangular intelligent mesh.

1: Set initial mesh M1

2: for i = 1, 2, . . . ,MaxIter

3: Execute SmartMesh.exe with the mesh Mi and the topological model as inputs.

This will generate the output field of metric tensors Mi.

4: Execute oort.exe with the mesh Mi, the field of metric tensors Mi and the

geometric model as inputs. This will generate the adapted mesh Mi+1.

5: end

6: if the user wishes to use Layer program then

88

7: Call Layer with mesh MMaxIter as input. The output will be a modified mesh

MMaxIter with structured layers added where desired.

8: end

5.5.5 Evolution of the input mesh

The following figures show the evolution of a mesh during the iterations of a SmartMesh

script execution. This example shows the convergence towards the final mesh in five

iterations. Clearly, one iteration is not enough and there is clearly an improvement

in continuing to execute the loop with SmartMesh and OORT .

VU
Y
Z X

Figure 5.4: Initial mesh.

89

VU
Y
Z X

Figure 5.5: Step 1 in the SmartMesh script execution.

Y
Z XVU

Figure 5.6: Step 2 in the SmartMesh script execution.

90

Y
Z XVU

Figure 5.7: Step 3 in the SmartMesh script execution.

Y
Z XVU

Figure 5.8: Step 4 in the SmartMesh script execution.

91

Y
Z XVU

Figure 5.9: Step 5 in the SmartMesh script execution (final mesh).

92

6 Testing and results

Science is facts; just as houses are made of stones, so is sci-
ence made of facts; but a pile of stones is not a house and a
collection of facts is not necessarily science.

Henri Poincaré

This chapter covers the test cases used to validate that SmartMesh allows the

user to control enough unstructured triangular mesh generation such that he can

solve problems in different application domains. The application domain used is CFD.

Three problems were tested: the U-duct, airplane wings and hydraulic turbines. Each

problem has its own requirements that must be met so that the user can compute an

accurate solution.

6.1 U-duct

The U-duct is a tube in which water must pass. The test case used in this section is

from [34]. The geometry of this test case is shown in Fig. 6.1.

It is worth noting that this geometric domain has no holes inside the domain

creating obstacles for fluid flow. Rather, the external boundaries are the obstacles.

Figure 6.2 shows a quadrilateral mesh that was generated manually in [34] as

well as a triangular mesh created by SmartMesh with similar properties using a

SmartMesh configuration file. Here we see that there is a need for additional precision

along the outer boundaries and even more precision where external boundaries curve.

Figure 6.2 shows that by using SmartMesh components a user can re-create a

93

X

Y

Z

Y
Z XVU

Figure 6.1: Geometry of U-duct problem.

VU

X

Y

Y
X

Z

Z

X

Y

Z

Y
Z XVU

Figure 6.2: Different meshes for the same U-duct problem.

94

mesh that is similar to a mesh created by a different software.

VU X
Y
Z

Figure 6.3: Additional precision where curvature is strong (SmartMesh output).

In order to achieve this mesh outputted by SmartMesh, the DISTANCE TO POINT

algorithm was used on the two corners of the left input of the U-duct. Then, the

CURVATURE OF BORDER algorithm was used on the curve that crosses the top por-

tion of the domain, beginning at the outer corner of the left side of the U-duct and

ending at the outer corner on the opposite size. Another CURVATURE OF BORDER algo-

rithm was used on the curve that crosses the bottom part of the domain. Finally, a

DISTANCE TO IMAGINARY POLYLINE algorithm was used on the right side of the U-duct

to simulate the wake created by particles passing through that region.

6.2 Airplane wings

External flow around wings is characterized by thin boundary layers, shocks in tran-

sonic and supersonic regime, and a wake possibly with von Karman alleys. All these

features are localized compared to the size of the computational domain. All these

95

features are also strongly directional. The brute force approach, which consists of

having a uniform and dense mesh over all the computational domain, is too costly.

Therefore tools must be developed to drive the mesh generator to concentrate and

align the mesh where needed. For these reasons, computational fluid dynamics are

historically one of the leading sources of research in mesh generation.

In this section, two mesh generation approaches will be compared on many classic

test cases found in the literature. The first approach is to use the a posteriori mesh

adaptation. This is done first by computing a solution on the mesh, then by computing

an error estimate based on the second derivatives of the computed solution, finally

by computing an adapted mesh that equidistributes the error estimate. These three

steps are performed many times by using a loop. The CFD solver used is NSC2kε

by [29]. The mesh adapter used is OORT . See [1] for a more detailed description of

this approach.

The second approach is to use SmartMesh. This is a priori man driven mesh

adaptation, unlike the first approach, which is an a posteriori automatic error esti-

mator driven mesh adaptation. The same solver NSC2kε will be used. The solution

obtained with the first approach is used to help the user localizing flow features. The

goal is to show that SmartMesh is flexible enough that a user can automatically

reproduce by hand the meshes produced by the first approach and to show that these

man made meshes are good enough to compute about the same solution with the

same solver.

6.2.1 AGARD test cases on a NACA0012 airfoil

The AGARD01-05 test cases of the AGARD Working Group 07 ([22, 30]) are pre-

sented to validate SmartMesh. They consist of inviscid, transonic and supersonic

external flows over a NACA 0012 airfoil. The free-stream conditions are summarized

in Table 6.1 and the flow fields include shocks, either attached or detached, which are

difficult to capture, particularly on coarse grids.

96

Table 6.1: Free-stream Mach number (M∞) and angle of attack (AoA) for the

AGARD01–05 test cases.

Test case M∞ AoA

AGARD01 0.80 1.25◦

AGARD02 0.85 1.00◦

AGARD03 0.95 0.00◦

AGARD04 1.20 0.00◦

AGARD05 1.20 7.00◦

6.2.2 AGARD01

Figure 6.4 displays a generic Delaunay mesh generated by the software Tri△ngle

from [33]. This mesh has 3691 vertices and 6730 triangles. Sure, a solution can be

computed on this mesh, but this is clearly not suitable to compute accurate shocks.

Figure 6.4 also displays the solution computed with NSC2kε. The contour plots of

this subsection will show contours of the Mach number with steps of 0.05. Notice

that the upper shock is present but not well captured and also notice that the lower

shock is missing.

Even if the mesh in Fig. 6.4 is not suitable for this flow and even if the solution is

not accurate, they can be used to derive a posteriori error estimator based on second

derivatives of the solution and mesh adaptation can be used to equidistribute this

error. This will lead to a better mesh and will allow to compute a better solution. This

is done again and again. Figure 6.5 shows the result of this process after 10 iterations

of the mesh adaptation loop. This mesh has 4112 vertices and 8008 triangles. Note

how smooth are the contours, how accurate and fine is the shock, and also note the

presence of the weak lower shock.

SmartMesh is used to mimic the mesh of Fig. 6.5 obtained by a posteriori mesh

adaptation. The mesh created with SmartMesh is shown in Fig. 6.6. This mesh was

97

Figure 6.4: Test case AGARD01. Generic Delaunay mesh generated by Tri△ngle and

Mach contours of the solution computed with NSC2kε.

Figure 6.5: Test case AGARD01. Adapted mesh generated by OORT and Mach

contours of the solution computed with NSC2kε.

98

simply created by using the algorithm DISTANCE TO POINT on the leading edge and

the trailing edge, and with the algorithm DISTANCE TO IMAGINARY POLYLINE with two

polylines, one for each shock. The position of the polylines were roughly extracted

from the previous mesh. This mesh has only 2465 vertices and 4727 triangles, which is

significantly less than the two previous ones. Essentially, there are less vertices in the

shocks because parameters used in the algorithm DISTANCE TO IMAGINARY POLYLINE

were set to create anisotropic (stretched) triangles. The mesh obtained with a poste-

riori mesh adaptation has quite small isotropic triangles in the shocks.

Figure 6.6: Test case AGARD01. Mesh generated by SmartMesh and Mach contours

of the solution computed with NSC2kε.

The corresponding solution computed with NSC2kε is also shown in Fig. 6.6.

This solution computed is very similar to the one computed with anisotropic mesh

adaptation, especially considering that there are 40% less vertices. A more significant

comparison, for an airplane engineer, is the pressure coefficient Cp on the wall of the

airfoil. This is given in Fig. 6.7. Note that the two shocks obtained with the initial

mesh are inaccurate compared to those obtained with OORT and SmartMesh. The

upper shock is strong and both OORT and SmartMesh give the same location.

However, the shock with SmartMesh has more oscillations. For the lower weak

99

shock, the three meshes produce three different locations.

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

−
C

p

x/c

Tri△ngle

OORT
SmartMesh

Figure 6.7: Test case AGARD01. Pressure coefficient Cp on the wall of the airfoil for

the three different meshes.

6.2.3 AGARD02

Using the same techniques as for the AGARD01 test case of the previous subsection,

the test case AGARD02 was computed. The results are shown in Fig. 6.8. The

mesh with the a posteriori mesh adaptation using OORT has 7503 vertices and

14754 triangles. The mesh hand made with SmartMesh has 3222 vertices and 6228

triangles, which is less than half of the total elements in the first mesh. Playing with

the parameters, we can control the number of vertices and have 10 times more if

needed. But, in this case, the parameters were the same for both meshes. The main

difference is in the shocks. With error estimation and mesh adaptation with OORT ,

the triangles are mostly isotropic in the shocks, even if the shocks are directional

features. This is caused by inviscid flows that require infinitely sharp shocks. With

100

viscous flows, shocks have a physical width and mesh adaptation produces anisotropic

triangles aligned with the shocks.

Figure 6.8: Test case AGARD02. At the top, mesh generated by OORT and Mach

contours of the solution computed with NSC2kε. Same thing at the bottom, but mesh

generated with SmartMesh.

On the contrary, meshes produced with SmartMesh has less vertices because

triangles in the shocks are stretched and aligned. The stretching and direction is

controlled by hand with the DISTANCE TO IMAGINARY POLYLINE algorithm where the

parameters are set to impose the stretching of triangles. Nevertheless, the solutions

101

in Fig. 6.8 are very similar.

The pressure coefficient Cp on the airfoil wall is plotted if Fig. 6.9. Note small

oscillations of the pressure coefficient Cp around x/c = 0.1 for the solution computed

on the mesh produced by OORT . This mesh may not be fine or regular enough at

this location. However, the pressure coefficient Cp before and after the shocks has

more oscillations for the solution computed on the mesh produced by SmartMesh.

Overall, both solutions are remarkably similar.

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

−
C

p

x/c

OORT
SmartMesh

Figure 6.9: Test case AGARD02. Pressure coefficient Cp on the wall of the airfoil

with meshes produced by OORT and SmartMesh.

6.2.4 AGARD03

The test case AGARD03 has a Mach number of 0.95 and an angle of attack of zero

degrees. So the solution should have a symmetry of reflexion through the x-axis. See

Fig. 6.10 for a general overview of the meshes used and of the solutions obtained. The

mesh obtained with mesh adaptation and OORT has 104 530 vertices and 208 771

102

triangles. The mesh handcrafted with SmartMesh, using shock location obtained

with the first approach, has 64 441 vertices and 128 432 triangles.

Figure 6.10: Test case AGARD03. From left to right. The mesh obtained with

mesh adaptation with OORT and the mesh handcrafted with SmartMesh. Then the

solution computed with NSC2kε on the corresponding meshes.

The solution is characterized by two expansion shocks at the trailing edge. These

two shocks are joined together by a weak vertical shock called the fish-tail shock. It

is usually difficult to get this shock and its position along the x-axis is very sensitive.

For example, the two expansion shocks at the trailing edge extends up to 35 chords.

The chord for the NACA0012 is not 1.0, but 1.00893. So the domain must be large

enough such that the boundaries and the boundary conditions do not affect expansion

shocks, which in turn affect the fish-tail shock. Here, the domain used has a radius

of 75.0. Another example is the accuracy of the solution at the leading edge and

103

along the profile. If the mesh is not fine enough, the solution will not be accurate

enough and this will change the solution upstream to the two expansion shocks at

the trailing edge which in turn affect their location which finally alters the location

of the fish-tail shock.

Figure 6.11: Test case AGARD03. At the top, mesh generated by OORT and Mach

contours of the solution computed with NSC2kε. Same thing at the bottom, but mesh

generated with SmartMesh.

Figure 6.11 shows a zoom of the expansion shock and the fish-tail shock with both

approaches. The fish-tail shock position on the x-axis is 3.234 chords ±0.001 with

104

the first approach (mesh adaptation and OORT) and 3.227 chords ±0.001 with the

second approach (SmartMesh).

A grid dependency study performed by [37] on 65×25, 129×49, 257×97 and 2049×

765 C-grids, in a 100-chord domain, has shown that the fish-tail shock asymptotically

moves to a location 3.35 chords behind the trailing edge on their finest mesh (2049×

765 represents 1 567 485 vertices), which was approximately 15 and 25 times finer

than the present meshes. Their conclusion is that with even further extrapolation,

the position of the fish-tail shock, on an asymptotically infinitely fine grid, would be

3.32 chords behind the trailing edge.

6.2.5 AGARD04

The test case AGARD04 has a Mach number of 1.20 and an angle of attack of zero

degree. Therefore the solution should have a symmetry of reflexion through the x-

axis. See Fig. 6.12 for an upper-half overview of the meshes used and the solutions

obtained. The mesh obtained with mesh adaptation and OORT has 47 779 vertices

and 95 268 triangles. The mesh handcrafted with SmartMesh, using shock location

obtained by the first approach, has 26 325 vertices and 52 256 triangles.

6.2.6 AGARD05

The test case AGARD05 is very similar to AGARD04, both have a Mach number

of 1.20, but now with an angle of attack of 7 degrees. This means that the solution is

no longer symmetric through the x-axis. See Fig. 6.13 for a general overview of the

meshes used and the solutions obtained. The mesh obtained with mesh adaptation

and OORT has 55 123 vertices and 109 990 triangles. The mesh handcrafted with

SmartMesh, using shock location obtained by the first approach, has 38 427 vertices

and 76 421 triangles.

Both test cases AGARD04 and 05 have a supersonic detach bow shock upstream

to the wing and tail shocks attached to the trailing edge. The bottom tail shock

105

Figure 6.12: Test case AGARD04. From left to right. The mesh obtained with

mesh adaptation with OORT and the mesh handcrafted with SmartMesh. Then the

solution computed with NSC2kε on the corresponding meshes.

106

Figure 6.13: Test case AGARD05. From left to right. The mesh obtained with

mesh adaptation with OORT and the mesh handcrafted with SmartMesh. Then the

solution computed with NSC2kε on the corresponding meshes.

107

on the AGARD05 test case is known to be difficult to capture. The reader may

also notice the “wake” behind the trailing edge of the AGARD05 test case. This

is an Euler inviscid flow simulation and there should not be any wake. This small

wake, slightly visible in the solution and more visible looking at the adapted mesh, is

probably numerical errors generated at the trailing edge.

These two test cases show the limits of SmartMesh. Without mesh adaptation,

it is very difficult to forecast the location of the bow shock. An approach could be to

use a very fine mesh everywhere to compute the bow shock location, but this would

be very costly. With mesh adaptation, an initial mesh was used, a solution computed

with NSC2kε, an error estimator deduced and a new mesh generated with OORT ,

and again and again ten times. With this procedure, shock locations can be computed

automatically at a low cost without any prior knowledge. Without this knowledge,

SmartMesh is unusable. But with this knowledge, SmartMesh is used to redo by

hand the meshes. Those meshes are even better because they are smoother, there are

less vertices still having the same density. On those meshes, NSC2kε computes very

similar solutions usually smoother.

6.2.7 The GAMM A7 test case on a NACA0012 airfoil

The GAMM-Workshop [8] problem A7 is a viscous flow at Mach 0.85, a zero degree

angle of attack and a Reynolds number of 10 000, again over a NACA0012 airfoil.

This flow is viscous, so it is characterized by a boundary layer and a wake. It is

also transonic, so it has two attached supersonic shocks above and below the wing.

Finally, it is an unsteady flow characterized by a von Karman alley in the wake. See

Fig. 6.14 for additional details.

Back in 1987, none of the contributors of this GAMM-Workshop were able to

compute a von Karman alley. At that time, this problem was too costly and the

numerical schemes used to solve the Navier-Stokes equations were too viscous. This

is now quite an easy problem to solve on a simple laptop due to improved processing

108

Figure 6.14: Test case GAMM A7. At the top, general view of the handcrafted

mesh obtained with SmartMesh and the corresponding unsteady solution. Close

view around the wing at the bottom.

109

power. In the literature, this problem is now usually done with a Reynolds number

of 5000 instead. This is more viscous and less prone to be unsteady, so in some way

more difficult. The result shown in Fig. 6.14 is done with a Reynolds number of 5000.

Also, in this case only, isocontours of the Mach number are at every 0.025 instead

of 0.05 as in all other results on the NACA0012. This mesh has 17 740 vertices and

35 144 triangles.

For all the AGARD test cases, flows are steady, and meshes and solutions were

presented with both approaches, namely automatic mesh adaptation with OORT and

handmade mesh generation with SmartMesh. But in this GAMM A7 test case, flow

is unsteady and presents difficulties for automatic mesh adaptation. The reason for

this requires some explanations. Suppose that the unsteady solution was computed

on a given mesh up to the time t1. Then an error estimator is used to approximate the

error on the solution at time t1. From this error estimator, a new mesh is produced

with OORT to minimize this error at time t1 and the solution is interpolated from

the old mesh to the new mesh. Then NSC2kε is used again to advance simulation

time from time t1 to time t2. And everything is done again, i.e., error estimator, mesh

adaptation, solution interpolation. And so on for time t3, t4, ... Clearly this approach

has two problems:

• There are solution interpolations between meshes. This induces diffusion, smooth-

ing and mass loss.

• The mesh adaptation process as described above is an a posteriori mesh adap-

tation. The mesh is adapted to the solution computed before, not to the future

solution to be computed. For unsteady phenomenons that change in time and

move inside the computational domain, a posteriori mesh adaptation cannot

build a fine mesh where the phenomenon will be in future time.

However, in this case, the unsteady phenomenons are swirls that move from left to

right in the wake of the airfoil, which means the unsteady phenomenons are limited

110

to a horizontal band downstream the airfoil. With SmartMesh, a large wake was

created, with standard additional features as fine and aligned mesh around the airfoil

to catch the boundary layer, a fine mesh at leading and trailing edge and a fine mesh

around supersonic shocks. This is the mesh shown in Fig. 6.14 and the solution clearly

shows the von Karman alley, the boundary layer and the transonic shocks.

6.3 Hydraulic turbine

The need for mesh adaptation in the hydraulic turbine design problem is described

in [14, 21]. The goal is to create a mesh that can accurately test whether or not

a particular distributor design performs well in a CFD simulation. Of particular

interest is the fluid flow close to the domain obstacles which are distributor blades

and also the fluid flow in the wake of these blades.

This section will cover some simple distributor test cases to show that if the

topological part of the geometric model remains the same but the geometric part

changes, the same SmartMesh configuration parameters can be used for each design.

Also, a series of industrial test cases done using SmartMesh and H2OMESH will be

covered. Each test case covered in this section has two blades: the stay vane which

is situated at the front closest to the inlet where the water arrives into the geometric

domain and the guide vane which sits behind the stay vane.

6.3.1 Simple distributor test cases

Enginners usually want to optimize hydraulic turbine design. This is done in a loop

where a turbine shape is tested. This design is the geometric model which can be

used as input for the SmartMesh script in order to create an appropriate mesh. The

output mesh and geometric model can be inputted into a program that performs

a CFD simulation and evaluates the efficiency of the turbine design. Using this

approach, it is possible to evaluate many shapes of distributor blades.

111

Recall that SmartMesh is independent of the geometric part of the geometric

model. When proposing a new turbine design, the relation between topological en-

tities remains the same while the curve definitions and positions change. In essence,

the topological part of the geometric model remains the same while the geometric

part changes. Since the topology is static, it is possible to run this hydraulic turbine

optimization loop while always using the same SmartMesh configuration file.

For each of the following simple distributor test cases, the mesh is created by

first applying the DISTANCE TO POINT algorithm on two topological vertices located

at the trailing edge of the guide vane to the right side. There are an additional five

topological vertices on the stay vane on the left side where the DISTANCE TO POINT

algorithm is executed. The DISTANCE TO BORDER algorithm is applied to the stay vane

while the CURVATURE OF BORDER algorithm is applied to the guide vane. Finally, the

DISTANCE TO IMAGINARY POLYLINE algorithm is applied to simulate the wake to the

right of both blades.

6.3.1.1 Distributor 1

The first distributor test case has a very narrow guide vane. The goal is to show

the effects of the curvature of border algorithm at the leading edge of the guide vane

where the curvature will be very strong. Using the static configuration parameters

defined in this section, SmartMesh was able to produce an output mesh. Figure 6.15

shows the domain geometry for this case and the corresponding mesh generated by

SmartMesh.

Of particular interest in this problem is the leading edge of the guide vane where

the narrow blade causes a strong curvature. Figure 6.16 shows the effect of this

algorithm on the mesh.

112

VU XZ
Y

VU
Y
Z X

Figure 6.15: Geometric domain and mesh for the first hydraulic turbine distributor.

X
Y

VU Z

Figure 6.16: Effect of curvature of border algorithm on the leading edge of the guide

vane.

113

6.3.1.2 Distributor 2

The second distributor test case has a very thick guide vane and a larger gap between

the two blades. The goal is to show the effects of the distance between two borders

algorithm in a context featuring a larger distance between the stay vane and the guide

vane. Using the static configuration parameters defined in this section, SmartMesh

was able to produce an output mesh. Figure 6.17 shows the domain geometry for this

case and the corresponding mesh generated by SmartMesh.

VU XZ
Y

VU XZ
Y

Figure 6.17: Geometric domain and mesh for the second hydraulic turbine distributor.

Of particular interest in this problem is the area between the stay vane and guide

vane where the wide gap should lead to the distance between two borders algorithm

has less effect on the mesh. Figure 6.18 shows the effect of this algorithm on the

mesh.

6.3.1.3 Distributor 3

The third distributor test case has a thin S-shaped guide vane and a very small gap

between the two blades. Contrary to the second distributor test case, the goal of the

third test case is to show the effects of the distance between two borders algorithm in

a context featuring a very small distance between the stay vane and the guide vane.

114

X
Y

VU Z

Figure 6.18: Effect of distance between two borders algorithm on the second distrib-

utor.

115

Recall that the same configuration parameters are being used. The expectation is

that the algorithm will have a much more significant effect on the final mesh. Using

the static configuration parameters defined in this section, SmartMesh was able to

produce an output mesh. Figure 6.19 shows the domain geometry for this case and

the corresponding mesh generated by SmartMesh.

XZ
Y

VU XZ
Y

VU

Figure 6.19: Geometric domain and mesh for the third hydraulic turbine distributor.

Of particular interest in this problem is the area between the stay vane and guide

vane where the narrow gap should lead to the distance between two borders algorithm

having a significant effect on the mesh. Figure 6.20 shows the effect of this algorithm

on the mesh.

In conclusion, these three different distributors were in fact not much different.

They all have the same topology, only the geometric description of the blade curves

changes slightly. The purpose of this was to mimic a blade optimizer that tests dif-

ferent shapes. The three test cases had the same execution with the same parameters

for SmartMesh and OORT . In all cases, the meshes produced are not the same, but

have the same characteristics and quality. We believe, even if it was not tested, that

the mesh produced can be used by a shape optimization software.

116

X
Y

VU Z

Figure 6.20: Effect of distance between two borders algorithm on third distributor.

6.3.2 Industrial testing

At École Polytechnique in Montréal, there is a program called H2OMESH that does

the full process of generating the computational domain in question, creating an initial

mesh, modifying the mesh intelligently and performing a CFD simulation. CFX is

the CFD solver used to run simulations and perform calculations.

One area of interest in the industrial testing is the use of the Layer program

to add a structured quadrilateral grid around the distributor vanes. The process of

creating this additional structured grid is automated in H2OMESH.

Additionally, H2OMESH creates fictitious periodic boundaries between vanes of

the distributors. The goal is to be able to do numerical simulations only on a tandem

composed of two vanes, one stay vane and one guide vane. The segmented borders

must adhere to periodicity so that the same mesh can be duplicated and placed side-

by-side for the simulation. Fictitious periodic boundaries could be a piecewise linear

curve or a higher order curve. Also, the mesh on these fictitious periodic boundaries

117

may, or may not, be periodic.

Prior to the testing performed in this section, it was not known if

• CFX is able to solve without a structured grid of quadrilaterals around the

vanes;

• CFX is able to deal with non periodic meshes on periodic boundaries.

As these test cases will show, CFX is compatible in both cases.

Note that this test case in under a non-disclosure agreement with Andritz AG

and its subsidiary in Pointe-Claire, in west suburb of Montréal. All pictures in this

section were slightly skewed, scaled, twisted and so on.

Figure 6.21 shows the resulting mesh and solution obtained by H2OMESH. This

test is generated by an expert in the field. The output mesh has 6 901 vertices and

10 334 combined triangles and quadrilaterals.

Figure 6.21: Mesh generated by H2OMESH with a structured layer and isocontours

of the velocity field computed by CFX.

118

It is worth noting that H2OMESH does not provide a mechanism to create a fine

mesh past the trailing edge of the vane for accurate wake simulation. This results in a

loss of accuracy beyond the edges of the distributor blades where the water particles

continue their course. SmartMesh results will improve upon this drawback.

In this section we will show the solution with a simple Delaunay mesh done with

Tri△ngle, as well as the solutions associated to SmartMesh outputs which include

meshes with and without periodic mesh on periodic boundaries and also with and

without an added structured skin around the stay vane and guide vane.

6.3.2.1 SmartMesh – Simple Delaunay mesh

Any Delaunay mesh can be used to obtain a solution and perform calculations. The

process of creating a simple Delaunay mesh is fast and easy. However, such a mesh

is not satisfactory when it comes to running simulations and performing accurate

calculations. Figure 6.22 shows a generic Delaunay mesh created by Tri△ngle along

with the corresponding isocontours of velocity field which was output by the CFX

solver. The output mesh has 2 887 vertices and 5 196 triangles.

When comparing to the isocontours shows in the H2OMESH output in Fig. 6.21

one can see that this result is not accurate. Therefore, SmartMesh must be used to

intelligently adapt this mesh in an attempt to produce a solution with isocontours

resembling the H2OMESH solution.

6.3.2.2 SmartMesh – Curved boundaries, added structured skin

This sub-section will present a mesh generated by SmartMesh where the periodic

boundaries are curves and the Layer program is used to create a structured skin

around the the stay vane and guide vane. The mesh along the periodic boundaries

are not periodic, and as the periodic boundaries are curved, the periodic boundaries

no longer match. Figure 6.23 shows velocity isocontours of the solution generated by

CFX with this mesh as input. This mesh has 12 214 vertices and 20 710 combined

119

Figure 6.22: Generic Delaunay mesh generated by Tri△ngle and isocontours of the

velocity field computed by CFX.

120

triangles and quadrilaterals. Since the mesh generated by SmartMesh does account

for the wake while the mesh generated by H2OMESH does not, a mesh without the

wake was created by SmartMesh in order to obtain a number of mesh elements that

can directly be comparable to the result from H2OMESH.

Figure 6.23: Mesh generated by SmartMesh with curved boundaries and added skin

around blades (left) and isocontours of the velocity field computed by CFX (right).

This test case confirms that the CFX solver is compatible with input meshes

that do not fit on curved periodic boundaries. However, one can see that there is

some disturbance in the velocity field isocontours close to this mesh’s boundary when

comparing to the H2OMESH solution. It is clear that the lines in this solution do

not follow the same pattern close to the boundaries. So while it is useful to know

that CFX can handle such meshes, the solution loses some accuracy because the

boundaries are not periodic.

Also worth noting is the wake of both blades in this solution’s velocity field isocon-

tours. When comparing with the H2OMESH solution, one can see that this solution

121

offers additional precision in this area. This is because SmartMesh supports the dis-

tance to imaginary polyline algorithm while H2OMESH does not. This may not be

very important for the guide vane, but an accurate wake for the stay vane will change

significantly the solution on the guide vane as the stay vane wake hits the guide vane.

6.3.2.3 SmartMesh – Curved boundaries, no added structured skin

This sub-section will present a mesh generated by SmartMesh where the periodic

boundaries are curves and has no added structured skin. Figure 6.24 shows velocity

isocontours of the solution generated by CFX with this mesh as input. The mesh

has 9 113 vertices and 17 609 triangles. Since the mesh generated by SmartMesh

does account for the wake while the mesh generated by H2OMESH does not, a mesh

without the wake was created by SmartMesh in order to obtain a number of mesh

elements that can directly be comparable to the result from H2OMESH.

This test case confirms that the CFX solver is compatible with input meshes that

do not have an added structured skin around the stay vane and guide vane. However,

one can see that there is some disturbance in the velocity field isocontours close to

this mesh’s stay vane and guide vane when comparing to the H2OMESH solution. It

is clear that the lines in this solution do not follow the same pattern close to the two

distributor blades. So while it is useful to know that CFX can handle such meshes,

the solution loses some accuracy because there is no added structured skin. The same

can be said for the isocontours at the external boundary of the mesh. It is clear that

the lines in this solution do not follow the same pattern close to the boundaries.

Also worth noting is the wake of both blades in this solution’s velocity field isocon-

tours. When comparing with the H2OMESH solution, one can see that this solution

offers additional precision in this area. This is because SmartMesh supports the

distance to imaginary polyline algorithm while H2OMESH does not.

Note that this was our first and unique trial with that type of mesh. All test cases

were done using the same parameters for CFX. Obviously, further research should be

122

Figure 6.24: Mesh generated by SmartMesh with curved boundaries and no added

skin around blades (left) and isocontours of the velocity field computed by CFX

(right).

123

done to tweak CFX parameters and SmartMesh parameters to obtain better solutions

with meshes containing no added structured skin.

6.3.2.4 SmartMesh – Periodic boundaries, added structured skin

This sub-section will present a mesh generated by SmartMesh where the periodic

boundaries are not curves but rather polylines. Even if the mesh on periodic bound-

aries is not periodic, piecewise linear periodic boundaries will always perfectly match,

provided that there is a mesh vertex between each segment of the periodic bound-

aries. In addition, this test case will have a structured skin around the distributor

blades. Figure 6.25 shows velocity isocontours of the solution generated by CFX with

this mesh as input. This mesh has 11 974 vertices and 20 313 combined triangles and

quadrilaterals. Since the mesh generated by SmartMesh does account for the wake

while the mesh generated by H2OMESH does not, a mesh without the wake was cre-

ated by SmartMesh in order to obtain a number of mesh elements that can directly

be comparable to the result from H2OMESH.

This test case should mimic the H2OMESH solution most closely because meshes

outputted by H2OMESH also have periodic meshes on periodic boundaries as well

as a structured skin around the stay vane and guide vane. When looking at both

solutions along the outer boundary and close to the distributor blades we can see

that the isocontours of the velocity field are almost the same.

Also worth noting is the wake of both blades in this solution’s velocity field isocon-

tours. When comparing with the H2OMESH solution, one can see that this solution

offers additional precision in this area. This is because SmartMesh supports the

distance to imaginary polyline algorithm while H2OMESH does not.

6.3.2.5 SmartMesh – Periodic boundaries, no added structured skin

This sub-section will present a mesh generated by SmartMesh where the periodic

boundaries are piecewise linear and where there is no skin around the distributor

124

Figure 6.25: Mesh generated by SmartMesh with piecewise linear periodic boundaries

and added skin around blades (left) and isocontours of the velocity field computed

by CFX (right).

125

blades. Figure 6.26 shows velocity isocontours of the solution generated by CFX with

this mesh as input. This mesh has 8 934 vertices and 17 282 triangles. Since the mesh

generated by SmartMesh does account for the wake while the mesh generated by

H2OMESH does not, a mesh without the wake was created by SmartMesh in order

to obtain a number of mesh elements that can directly be comparable to the result

from H2OMESH.

Figure 6.26: Mesh generated by SmartMesh with piecewise linear periodic boundaries

and no added skin around blades (left) and isocontours of the velocity field computed

by CFX (right).

One can see that there is some disturbance in the velocity field isocontours close to

this mesh’s stay vane and guide vane when comparing to the H2OMESH solution. It

is clear that the lines in this solution do not follow the same pattern close to the two

distributor blades. So while it is useful to know that CFX can handle such meshes,

the solution loses some accuracy because there is no added structured skin.

126

6.3.2.6 Value of adapting the mesh

In this thesis it has been stated that intelligent mesh adaptation is essential to gener-

ate a mesh that is suitable for obtaining accurate results from a solver. Here we will

investigate the isocontours of the solution for a simple Delaunay mesh, a mesh created

by SmartMesh with no added structured skin and a mesh created by SmartMesh

with an added structured skin from Layer. The images will zoom into the area be-

tween the stay vane and guide vane where there is a wake to be captured, a thin

boundary layer at the leading edge of the guide vane and a thick boundary layer at

the end of the guide vane.

Figure 6.27 shows a simple Delaunay mesh generated by Tri△ngle. This mesh

is not sufficiently fine in the important regions and thus the corresponding solution

has very rough isocontours. Since there is no intelligent mesh adaptation, the wake

behind the stay vane is almost completely absent in the calculated solution, which

means that this output is inaccurate. Furthermore, notice that he isocontours along

the distributor blade boundaries are not smooth at all due to the accompanying mesh

being too coarse in these regions.

Figure 6.28 shows a mesh created by SmartMesh with no added structured skin.

With mesh generation driven by an intelligent user, the mesh is sufficiently fine in

the wake and along the distributor blade boundaries. The accompanying solution

correctly captures the wake as seen by the smooth isocontours in this region. However,

along the boundaries, the solution’s isocontours are still a little bit rough compared

to the solution shown in Fig. 6.29. As explained, this is our first and unique trial.

CFD and CFX experts should be able to tweak parameters to obtain better solutions.

Figure 6.29 shows a mesh created by SmartMesh with a structured skin added

by the Layer program around the distributor blades. The structured skin allows the

CFX to capture boundary layers much more accurately along the boundaries. This

is especially obvious at the rear of the stay vane where the wake begins.

127

Figure 6.27: Simple Delaunay mesh and isocontours between distributor blades.

Figure 6.28: Adapted mesh with no structured skin and isocontours between distrib-

utor blades.

128

Figure 6.29: Adapted mesh with structured skin and isocontours between distributor

blades.

129

7 Conclusions

If we knew what it was we were doing, it would not be called
research, would it?

Albert Einstein

7.1 General conclusion

Remind that the goal of this thesis, according to Chapter 1, was to develop, implement

and test new methods to add more user control in unstructured triangular mesh

generation. If we are allowed to draw only one conclusion, it will be that the choices

made, the software written and the test cases done, show that we reached this goal.

7.2 Analysis of the results

7.2.1 Testing results

The goal of this thesis is to show that it is possible to have a general framework for

unstructured triangular mesh generation that can be deployed in any scenario and

adhere to the user’s requirements for his geometric domain and his application do-

main. In order to show that SmartMesh achieved this goal, many different problems

were used as test cases.

The U-duct test case was presented simply to show that SmartMesh has the tools

necessary to produce a mesh similar to the one presented by a different researcher

using different tools.

130

The airplane wing test cases show that SmartMesh can be applied to many dif-

ferent scenarios. Each of the different cases have different properties and different

requirements. The position of the shocks are different for each case. Without hav-

ing the capability of letting the user specify his own algorithms and parameters,

including the position of the shocks captured by the distance to imaginary polyline

algorithm, accurate meshes could not be created and accurate solutions could not be

computed with NSC2kε. However, the ability to have personalized executions allows

SmartMesh to create an accurate mesh and NSC2kε to compute an accurate solution

for each problem.

Also worth noting is that in some cases the placement of the shocks can be found

mathematically or by simple intuition while in other cases this is not as trivial.

SmartMesh alone cannot be used to find the placement of the shocks in non trivial

cases. The user can discover these shock locations by using one of the two methods.

The first method is an iterative approach. The user can guess where he thinks

the shock will be and call the distance to imaginary polyline algorithm with these

parameters. This will likely produce a bad result, but when visualizing the bad

solution the isocontours will likely give him a better idea of the shock placement.

The user can tweak the configuration parameters and try again. This process can

be repeated until the solver produces a solution that passes the accuracy evaluation.

This process is the posteriori mesh adaptation and is automatized in a loop that call

an error estimator to detect features and OORT to adapt a mesh accordingly.

The second method is to use algorithms to produce a very fine mesh throughout

the entire area where the shock could be located. One way to accomplish this is to use

the distance to imaginary polyline algorithm with a very large maximum distance.

This will assure that the mesh will be fine over a large area. While using this approach

makes it likely to find the location of the shock, the outputted mesh will contain a

much larger number of vertices and triangles which means the solver will execute

more slowly due to the extra computation required to perform calculations on all

131

mesh elements.

In short, SmartMesh could be used to figure out where are the unknown phe-

nomenons, but it is not the best tool for this. However, if the location of the phe-

nomenons is known, SmartMesh was proved to be able to drive accurately mesh

generation to tackle any phenomenons. In real life, an experimented user, who has

worked many years in the same application domain, will already know, before any

computation, where the many phenomenons are located. In this case, SmartMesh

is a flexible tool to express the a priori knowledge of the experimented users. An

example of this is fluid flow in distributor of hydraulic turbine.

The hydraulic turbine distributor test cases revealed some interesting results.

First, the simple distributor test cases show that given a geometric model, if the

topology remains the same, the geometry can change and the same SmartMesh

configuration file can be used. This is an important result because it shows that

SmartMesh can be integrated into a shape optimization software without having to

change the configuration for each new design tried by the optimization process.

The industrial test cases done by integrating SmartMesh into H2OMESH show

that SmartMesh can produce a mesh which can be inputted into a solver and produce

a solution that is very close to the one produced by H2OMESH, which is a software

used in the industry to provide reliable solutions. In this case, some a priori knowledge

is sufficient to create accurate meshes. It is known that there will be boundary layers,

no shocks and a wake starting at the trailing edge. However, a priori knowledge of

the exact path of the wake far from the trailing edge is probably not possible. The

results show that the algorithms and functions available in SmartMesh are sufficient

for solving real-life problems.

7.2.2 Observations

While the results show that SmartMesh can successfully be used in any domain, the

integration of SmartMesh in a particular domain is a time consuming and difficult

132

task. One such challenge is the compatibility of file formats. For example, when

integrating SmartMesh into H2OMESH, the output file from SmartMesh was in-

compatible with the other programs called by H2OMESH despite the fact that the

output was in the correct format (pirate). The issue was that the pirate format is

very flexible and H2OMESH only supports a subset of cases. With additional mod-

ifications to the parameters used in the calls by H2OMESH to other programs, the

output file from SmartMesh became compatible.

The test cases done with SmartMesh integrated into H2OMESH show that CFX is

a very flexible and robust CFD solver. Previously, H2OMESH testing only produced

meshes with exact periodic boundaries and with an added structured skin around

the distributor blades. SmartMesh produces non periodic meshes on the periodic

boundaries. If the periodic boundaries are curved, then they will not fit. If the

periodic boundaries are piecewise linear, then they will fit without the mesh being

periodic. Also, a pure triangular mesh without an added structured skin around the

blades was tested.

The results show that if the mesh has no added structured skin around the dis-

tributor blades or curved (non-periodic) boundaries, there are some disturbances in

the velocity field isocontours. However, the mesh produced by SmartMesh having

both the added structured skin and periodic boundaries like meshes outputted by

H2OMESH produced velocity field isocontours almost identical to those generated by

its industrial counterpart.

The disturbances in velocity field isocontours for certain solutions generated by

SmartMesh input can be explained by some additional factors. All the test cases

were done with exactly the same parameters in CFX. These simulations were not

performed by an expert in CFD and turbulence modeling. While it is useful to know

that CFX can perform calculations on meshes that do not have periodic boundaries

or an added structured skin around the distributor blades, it is not known whether

CFX can be configured to perform better under these circumstances. With further

133

research and intuition, these results could probably be improved.

7.3 Contributions

The mesh sizing problem is not new. However, the approach developed in this thesis

presents some interesting new features.

7.3.1 General framework for intelligent unstructured mesh generation

The results in Chapter 6 show that SmartMesh can easily be applied to many different

problems. The library is intended to be generic and no number is hard coded inside

the library. All algorithms with their parameters can be set by the user through a

configuration file. The syntax of the libconfig configuration file is, albeit not quite

user-friendly, surely not cryptic.

This control allows us to claim that SmartMesh is general. It should be able

to create suitable meshes for almost all application domains such as heat transfer,

electromagnetism, stress analysis, etc, as it was able to create meshes for CFD.

Unstructured mesh generation is always automatic, but the meshes produced are

ordinary and most of the time unusable. The user, with his experience of the ap-

plication domain obtained after years of work, can now script his knowledge into a

configuration file and produce, still automatically, an intelligent mesh suitable for

accurate numerical simulation.

7.3.2 Iterative approach

The common sense taught us that the first trial is rarely the best one or the successful

one. Every human learned this the hard way when trying to walk, run, bike or ski.

The only way to achieve good results is with trial and error. From a mathematical

point of view, we can say that a nonlinear problem cannot be solved in one iteration.

Most mesh sizing approaches found in literature are direct methods that create

134

a one shot mesh. There is no mechanism to improve the result. If you apply the

method many times, you will get the same results every time.

The iterative approach is the only known method that can approximate accurately

solutions of non linear problems. The approach used in this thesis is iterative by

design. A loop composed of SmartMesh and OORT really improves the mesh, one

iteration at a time.

7.3.3 Use the current mesh for all purposes

Most mesh sizing approaches use an extra data structure that overlap the geometric

domain. This data structure is used to compute geometric features and to store

some information. This is a mindless data structure but it has some justification

in its context. These approaches are direct, i.e. not iterative, and claim to be able

to create the perfect mesh on the first trial. Prior to building that first and final

mesh, an initial data structure is needed to perform some computations and to store

some values. This extra data structure is inaccurate, not body fitted and requires

additional memory and programming time.

In this thesis, the approach is iterative. Prior to having a good mesh, we can

live with a bad mesh, such as the one automatically generated by a Delaunay mesh

generator. This mesh is far from perfect according to the precise requirements of

the experimented user, but at least it discretizes the geometric domain and it is body

fitted. This mesh can be used to compute geometric characteristics and distance to the

boundaries will be accurate. Also, this mesh can be used to store computed values

and does not require an extra data structure that overlaps the geometric domain.

Furthermore, when the loop composed of SmartMesh and OORT goes on, this mesh

is getting more and more suitable for the computations that are performed on it and

for the data that it stores.

135

7.3.4 Independence of a CAD system

The mesh sizing problem consists essentially of creating meshes that take into account,

mainly, the boundaries. The boundaries are given by a CAD system. Then any

approach of the mesh sizing problem must depend on a CAD system. There are

three dependencies. We must be able to compute the distance to the boundaries, the

curvature of the boundaries, and the last, but not the least, to be able to mesh the

geometric domain defined by the boundaries.

In the SmartMesh library, there are algorithms that depend on the distance to

the boundaries and on the curvature of the boundaries. However, the SmartMesh

library is independent of a CAD system. This is achieved in the SmartMesh library

by replacing the boundaries of the geometric model by their discretizations provided

by the mesh. So, the distance to a boundary, which is a curve in the geometric

model, is replaced by the distance to a polyline. In the same manner, the curvature

of a boundary, which is the curvature of a curve defined in the geometric model, is

replaced by the curvature of a polyline. To replace a boundary in the geometric model

by a polyline in the mesh, we need to import the topological part of the geometric

model into the SmartMesh library. The topological entities help to find the mesh

edges that correspond to topological edges.

While the SmartMesh library is (almost) independent of the CAD system, the

SmartMesh program strongly depends on a CAD system. In this thesis, the SmartMesh

program used the pirate CAD system. But if the user needs to link with CATIA

or AutoCAD, for example, a complete new SmartMesh program must be written.

Theoretically, the SmartMesh library will not need a single modification.

Finally, last but not least, any mesh sizing approach must be able to mesh the

geometric domain defined by the boundaries. This strong dependence to a CAD

system is completely external to the SmartMesh library and SmartMesh program.

Remember that SmartMesh library and SmartMesh program do not create a mesh.

They only create a field of metric tensors. The mesh generator and the mesh adapta-

136

tion are two programs entirely independent of the SmartMesh library and program.

In this thesis, we used Tri△ngle as mesh generator and OORT as mesh adaptation.

These two software hold a strong dependence to a CAD system.

7.3.5 Efficient geometric calculations done by neighbour propagation

The computation of the geometric characteristics at a given vertex can be completed

in O(1) in time due to the neighbour propagation technique. Each vertex, with guess

information from an already processed neighbour vertex, can project itself on some

boundary in very few steps. Indeed, the storage of algorithm-specific information

at each vertex allows to quickly locate an edge on a boundary that is either the

closest location on that boundary or one that is very close to the shortest distance.

Therefore it is easy to find the closest edge without having to evaluate all edges of

that boundary.

Also, geometric characteristics do not need to be evaluated on all vertices of

the mesh, especially if these characteristics only affect a very small region of the

mesh. Indeed, beginning at the desired topological regions, we simply propagate to

neighbours until we reach the maximum distance threshold while ignoring all vertices

outside of this range.

7.4 Future work

7.4.1 Smoothing algorithm

When there are too many differences between two size tensors that are on close

vertices, OORT has trouble creating the corresponding mesh. A smoothing algorithm

could be implemented to remove extreme differences between neighbour size tensors.

This is prone to happen at the maximal distance of any algorithm’s application if the

maximal size of size tensors at that point is a lot smaller than the size tensors beyond

this distance. A smoothing algorithm can find these extreme differences and attempt

137

to make a smoother transition from small to large mesh triangles.

One proposed approach is to use the robust metric intersection algorithm already

present in the SmartMesh library in order to perform the smoothing. Since the

intersection retains the minimal area contained by both input metrics, this would

allow to reduce the size of existing large size tensors.

Currently in SmartMesh we depend on users providing input parameters that

make sense within the context of the domain, in order to avoid such situations.

7.4.2 Function types

Currently there are only a couple of different types of defined functions that help de-

termine the values of size tensors based on their environment. But there are dozens

of other approaches that can be used. Each new approach has advantages and disad-

vantages, but if used properly, can help a user to achieve his desired output mesh.

One issue with the implementation of new functions lies in the code itself, as

new classes and function calls would have to be added to the library for each new

function type. Even if we take advantage of class hierarchies by creating interfaces

and implementing them, it is impossible to cover all scenarios. New functions could

have a different type of input values and each algorithm has to create this value, as

well as treating the output value appropriately.

7.4.3 Minimum and maximum size

When inputting functions into SmartMesh the user must specify minimum and max-

imum sizes. In essence, the minimum size is applied exactly at the source (boundary,

imaginary polyline or vertex) of the algorithm, while the maximum size is applied at

the maximum distance. Conceptually, the minimum is lesser than the maximum and

this condition is imposed to users. However in practice this does not have to be the

case.

138

It is possible to have situations where triangle size should decrease as we move

away from a boundary. It is also possible that the size is constant between the source

and the maximum distance. SmartMesh could be adapted to accommodate this

change and make these scenarios available to users.

For this change to take effect, it would be very convenient to change some label

names in the libconfig parser so that users are not mislead into thinking that the

existing minimum and maximum conditions are still in place. The MINSIZE label

could be changed to SIZE AT BORDER or SIZE AT TOPOLOGICAL VERTEX to

indicate that the value chosen will be applied at the source of the algorithm. Likewise,

MAXSIZE could be changed to SIZE AT MAX DISTANCE to indicate that the value

will be applied at the maximum distance away from the source of the algorithm.

With these label changes made, users can select whichever non negative size values

they want. The growth or contraction at the rate of the exponent value provided

would give users a lot of added flexibility and would help SmartMesh appeal to even

more domains and scenarios.

7.4.4 Curvature at topological vertex

Mathematically there is no curvature defined at each end of a curve. However, in

SmartMesh there are size tensors at each mesh vertex, therefore it is necessary to

determine an orientation and size at those points. It is not ideal to use the three-point

radius method defined in Section 3.3.2 because the neighbours of the topological ver-

tex are part of different curves and thus it is possible to have very extreme curvature

values at this point.

The current method is to use the average size and orientation of the two neighbour

points on the boundary in question. However, this approach is very generic and more

could be done to take advantage of the environment.

A new method to handle this special case could lead to a more accurate solution

at the point linking the two boundaries.

139

7.4.5 Explore additional methods to compute normals and curvature

In [15] there are many methods to compute normals and curvature on a discrete para-

metric curve. SmartMesh only implements one of them to define curvature values.

While many of the other methods are very complicated and difficult to implement,

some have proved to be more accurate and therefore there could be a benefit to

SmartMesh.

Ideally, several normal and curvature methods could be made available and the

user could choose which one to use in the configuration file.

7.4.6 Implementation in three dimensions

Implementing SmartMesh in three dimensions is more a software engineering task

than a research topic. If we move to three dimensions, it is essentially done to deal

with real industrial problems. This implies real and complex geometries done with

CATIA or Pro/Engineer. Therefore three-dimensional mesh generation software must

deal with CAD systems. However, the SmartMesh library was designed to be almost

CAD free. It only needs the topological part of the geometric model. So, it should

not be difficult to implement the SmartMesh library in three dimensions.

However, SmartMesh does not create meshes, it only creates a field of metric

tensors. There must be a software that reads this field of metric tensors and creates a

three-dimensional mesh that fits as close as possible the input field and also discretizes

the geometric domain. This means that SmartMesh does not need to deal with a

CAD system, but the problem is still there. It is the duty of the mesh generator to deal

with the CAD system, and to deal with anisotropic unstructured tetrahedral meshes.

OORT did that task pretty well in two dimensions with anisotropic unstructured

triangular meshes. However, OORT is probably not robust enough for the same task

in three dimensions.

In short, creating a field of metric tensors is the “easy” part. Creating an

140

anisotropic unstructured mesh that satisfies this field and also satisfies a CAD system

is the bottleneck of the approach proposed in this thesis.

141

A SmartMesh user’s manual

When all else fails, read the instructions.

Cann’s (or Allen’s) Axiom

This is a user guide to show users how to create a SmartMesh configuration file

using Libconfig syntax.

A.1 SmartMesh libconfig syntax

A.1.1 Regions

Regions are a uniquely named group of entities of the same dimension in the topolog-

ical model. They are created so that the user can easily reference them when deciding

which entities are affected by the desired algorithms.

Syntax NAME = “any unique name”;

ENTITIES = [comma-separated list of topological code identifiers];

The list of regions must be assigned to a label name called CREATE REGIONS.

A.1.2 Distance functions

Distance functions are uniquely named and represent the distance functions defined

in Section 4.3.5.1. These functions are used by various algorithms to compute a size

tensor based on a vertex’s distance relative to a region of choice.

142

Syntax NAME = “any unique name”; MIN SIZE = decimal number ;

MAX SIZE = decimal number ;

EXPONENT = double number ;

The list of distance functions must be assigned to a label name called CRE-

ATE DISTANCE FUNCTIONS.

A.1.3 Curvature-to-size functions

The curvature-to-size functions are uniquely named and invoke the function definition

in Section 4.3.5.3. These functions are used by various algorithms to compute a size

tensor for vertices along a target border based on the curvature calculated at that

position.

Syntax NAME = “any unique name”;

MIN SIZE = decimal number ;

MAX SIZE = decimal number ;

SIZE OF ERROR = double number ;

A.1.4 Projection functions

Projection functions are uniquely named and invoke the function defined in Sec-

tion 4.3.5.2. These functions are used by various algorithms to compute a size tensor

based on a vertex’s distance relative to a region of choice.

Syntax NAME = “any unique name”;

MIN SIZE = decimal number ;

MAX SIZE = decimal number ;

EXPONENT = double number ;

143

A.1.5 Algorithms

The algorithms are executed in the order they appear in the file and invoke the unique

names of the regions and functions defined in the file. The list of algorithms must be

assigned to the label CREATE ALGORITHMS.

A.1.5.1 Uniform algorithm

Syntax TYPE = “UNIFORM ”;

SIZE = double number ;

REGIONS = list of defined region names ;

A.1.5.2 Distance to point algorithm

Syntax TYPE = “DISTANCE TO POINT”;

FUNCTION = defined distance function name;

REGIONS = list of defined region names ;

A.1.5.3 Distance to border algorithm

Syntax TYPE = “DISTANCE TO BORDER”;

PARALLEL FUNCTION = defined distance function name;

PERPENDICULAR FUNCTION = defined distance function name;

REGIONS = list of defined region names ;

A.1.5.4 Curvature of border algorithm

Syntax TYPE = “CURVATURE OF BORDER”;

PERPENDICULAR FUNCTION = “defined distance function name”;

CURVATURE TO SIZE FUNCTION = “defined curvature-to-size function name”;

PROJECTION FUNCTION = “defined projection function name”;

REGIONS = list of defined region names ;

144

A.1.5.5 Distance between two borders algorithm

Syntax TYPE = “DISTANCE BETWEEN TWO BORDERS”;

PARALLEL FUNCTION = defined distance function name;

PERPENDICULAR FUNCTION = defined distance function name;

REGIONS = “list of defined region names for first border”;

REGIONS2 = “list of defined region names for second border”;

A.1.5.6 Distance to imaginary polyline algorithm

Syntax TYPE = “DISTANCE TO IMAGINARY POLYLINE”;

PARALLEL FUNCTION = defined distance function name;

PERPENDICULAR FUNCTION = defined distance function name;

PROJECTION FUNCTION = defined projection function name;

REGIONS = list of defined region names ;

A.1.6 Configuration file example

Here is an example of a configuration file. Note that this file goes through cpp and

so can contain cpp instructions.

#define GUIDEVANE 11, 12, 1, 2, 3, 4, 5, 6, 7

// REGIONS note: NAME must be unique

CREATE_REGIONS =

(

{ NAME = "Inlet"; TOPOLOGICAL_ENTITIES = [301]; },

{ NAME = "Outlet"; TOPOLOGICAL_ENTITIES = [305]; },

{ NAME = "Periodic"; TOPOLOGICAL_ENTITIES = [302, 303, 304, 306,

307, 308]; },

145

{ NAME = "StayVane"; TOPOLOGICAL_ENTITIES = [101, 102, 103, 104,

105, 106, 107]; },

{ NAME = "GuideVane"; TOPOLOGICAL_ENTITIES = [201, 202, 203]; },

{ NAME = "Corners"; TOPOLOGICAL_ENTITIES = [GUIDEVANE]; },

{ NAME = "Fluid"; TOPOLOGICAL_ENTITIES = [1000]; }

);

CREATE_POLYLINES =

(

{ NAME = "POLYLINE1";

X_COORDS = [-50.0, -48.0, -46.0, -44.0];

Y_COORDS = [-12.8, -13.5, -13.5, -13.0]; }

);

CREATE_DISTANCE_FUNCTIONS =

(

{

NAME = "FStayVanePerp"; MINSIZE = 0.1;

MAXSIZE = 1.0; MAXDISTANCE = 5.0;

EXPONENT = 1.0;

},

{

NAME = "FStayVanePara"; MINSIZE = 1.0;

MAXSIZE = 2.0; MAXDISTANCE = 5.0;

EXPONENT = 1.0;

},

146

{

NAME = "FGuideVanePerp"; MINSIZE = 0.1;

MAXSIZE = 1.0; MAXDISTANCE = 5.0;

EXPONENT = 1.0;

},

{

NAME = "FGuideVanePara"; MINSIZE = 1.0;

MAXSIZE = 2.0; MAXDISTANCE = 5.0;

EXPONENT = 1.0;

},

{

NAME = "Fhaut"; MINSIZE = 0.04;

MAXSIZE = 0.05; MAXDISTANCE = 0.5;

EXPONENT = 1.0;

},

{

NAME = "F3"; MINSIZE = 0.05;

MAXSIZE = 0.25; MAXDISTANCE = 0.5;

EXPONENT = 3.0;

},

{

NAME = "Fcorners"; MINSIZE = 0.02;

MAXSIZE = 0.5; MAXDISTANCE = 0.75;

EXPONENT = 2.0;

147

},

{

NAME = "FLinePerp"; MINSIZE = 0.03;

MAXSIZE = 0.5; MAXDISTANCE = 2.0;

EXPONENT = 1.0;

},

{

NAME = "FLinePara"; MINSIZE = 0.03;

MAXSIZE = 1.0; MAXDISTANCE = 2.0;

EXPONENT = 1.0;

}

);

CREATE_PROJECTION_FUNCTIONS =

(

{ NAME = "P1"; MAXSIZE = 2.0; MAXDISTANCE = 1.0; EXPONENT = 1.0; },

{ NAME = "P2"; MAXSIZE = 2.0; MAXDISTANCE = 2.0; EXPONENT = 1.0; }

);

CREATE_CURVATURE_TO_SIZE_FUNCTIONS =

(

{ NAME = "C1"; MINSIZE = 0.1; MAXSIZE = 1.0; SIZE_OF_ERROR = 0.1; }

);

CREATE_ALGORITHMS =

(

148

{ TYPE = "UNIFORM"; SIZE = 2.0; REGIONS = ("Fluid"); },

{ TYPE = "DISTANCE_TO_POINT"; FUNCTION = "Fcorners";

REGIONS = ("Corners"); },

{ TYPE = "DISTANCE_TO_BORDER"; PERPENDICULAR_FUNCTION = "FStayVanePerp";

PARALLEL_FUNCTION = "FStayVanePara"; REGIONS = ("StayVane"); },

{ TYPE = "DISTANCE_TO_BORDER"; PERPENDICULAR_FUNCTION = "FGuideVanePerp";

PARALLEL_FUNCTION = "FGuideVanePara"; REGIONS = ("GuideVane"); },

{ TYPE = "DISTANCE_TO_IMAGINARY_POLYLINE";

PERPENDICULAR_FUNCTION = "FLinePerp";

POLYLINE_DISTANCE_FUNCTION = "FLinePara";

PARALLEL_PROJECTION_FUNCTION = "P1";

COORDINATES = "POLYLINE1"; REGIONS = ("Fluid"); }

);

149

B Metric intersection

It is easier to write an incorrect program than understand a
correct one.

Alan J. Perlis

Here is the Maple code for the robust metric intersection method defined in Section

3.2.2. This code was used as source for the metric intersection method implemented in

SmartMesh. Note that Maple provides many built-in mathematical functions that

are not available in C++ therefore some of the commands shown here had to be

implemented manually in SmartMesh.

You will notice the EigenVV2D command in this code. This is an in-house function

that, given a symmetric 2 × 2 input matrix, returns the two eigenvectors along with

each eigenvectors’s corresponding eigenvalue using the Jacobi method.

e1 := G:-get_Eigenvalues()[1];

e2 := G:-get_Eigenvalues()[2];

pt1 := multiply(matrix([[e1*cos(.75),e2*sin(.75)]]),

transpose(G:-get_Eigenvectors()));

pt2 := multiply(matrix([[e1*cos(3.14),e2*sin(3.14)]]),

transpose(G:-get_Eigenvectors()));

pt3 := multiply(matrix([[e1*cos(1.5),e2*sin(1.5)]]),

transpose(G:-get_Eigenvectors()));

Rot := transpose(F:-get_Eigenvectors());

150

e1 := F:-get_Eigenvalues()[1];

e2 := F:-get_Eigenvalues()[2];

invRot := F:-get_Eigenvectors();

scale := matrix([[1/e1, 0], [0, 1/e2]]);

invScale := matrix([[e1, 0], [0, e2]]);

p1 := multiply(Rot, transpose(pt1));

p1 := multiply(scale, p1);

p2 := multiply(Rot, transpose(pt2));

p2 := multiply(scale, p2);

p3 := multiply(Rot, transpose(pt3));

p3 := multiply(scale, p3);

f1 := eval(a*x^2 +2*b*x*y + c*y^2 = 1, {x=p1[1,1], y=p1[2,1]});

f2 := eval(a*x^2 +2*b*x*y + c*y^2 = 1, {x=p2[1,1], y=p2[2,1]});

f3 := eval(a*x^2 +2*b*x*y + c*y^2 = 1, {x=p3[1,1], y=p3[2,1]});

constants := solve({f1, f2, f3}, {a, b, c});

constants := op(constants);

for i in constants do

if op(i)[1] = a then a := op(i)[2] end if;

if op(i)[1] = b then b := op(i)[2] end if;

if op(i)[1] = c then c := op(i)[2] end if;

end do;

Rewrite the previous lines uising EigenVV2D

OutputList := EigenVV2D(a, b, c);

evalues := [abs(OutputList[1][1]), abs(OutputList[1][2])];

R := OutputList[2];

151

d1 := 1/sqrt(evalues[1]);

d2 := 1/sqrt(evalues[2]);

if operation = "intersection" then

if d1 > 1 then d1 := 1 end if;

if d2 > 1 then d2 := 1 end if;

else

if d1 < 1 then d1 := 1 end if;

if d2 < 1 then d2 := 1 end if;

end if;

pt1 := multiply(matrix([[d1*cos(.75), d2*sin(.75)]]), transpose(R));

pt2 := multiply(matrix([[d1*cos(3.14), d2*sin(3.14)]]), transpose(R));

pt3 := multiply(matrix([[d1*cos(1.5), d2*sin(1.5)]]), transpose(R));

p1 := multiply(invScale, transpose(pt1));

p1 := multiply(invRot, p1);

p2 := multiply(invScale, transpose(pt2));

p2 := multiply(invRot, p2);

p3 := multiply(invScale, transpose(pt3));

p3 := multiply(invRot, p3);

a := evaln(a);

b := evaln(b);

c := evaln(c);

f1 := eval(a*x^2 +2*b*x*y + c*y^2 = 1, {x=p1[1,1], y=p1[2,1]});

f2 := eval(a*x^2 +2*b*x*y + c*y^2 = 1, {x=p2[1,1], y=p2[2,1]});

f3 := eval(a*x^2 +2*b*x*y + c*y^2 = 1, {x=p3[1,1], y=p3[2,1]});

constants := solve({f1,f2,f3}, {a,b,c});

152

constants := op(constants);

Solutions return unsorted, sort to identify the correct values for

each constant a_i.

for i in constants do

if op(i)[1] = a then a := op(i)[2] end if;

if op(i)[1] = b then b := op(i)[2] end if;

if op(i)[1] = c then c := op(i)[2] end if;

end do;

Rewrite the previous lines uising EigenVV2D

OutputList := EigenVV2D(a, b, c);

evalues := [abs(OutputList[1][1]), abs(OutputList[1][2])];

R := OutputList[2];

temp := multiply(R, matrix([[1/sqrt(evalues[1]), 0],

[0, 1/sqrt(evalues[2])]]));

newInt := multiply(temp, transpose(R));

It may be a Size or a SquareSize, or a Density object that was

returned, but we create a SquareDensity object because that

kind of object does nothing with the eigenvalues.

But the type may be wrong... We must change the type of the

output to be the same as the type of the two inputs.

IntersectedMetric := Metric2D(matrix([[newInt[1,1],

newInt[1,2]],[newInt[1,2],newInt[2,2]]]), "SquareDensity");

IntersectedMetric:-set_Type(F:-get_MetricType());

153

C Javadoc documentation of SmartMesh

Give a man a fish and he will eat for a day; Teach a man to
fish and he will eat for a lifetime. The moral? READ THE
MANUAL!

Sign on a computer system consultant’s desk

Please see attached disc for a detailed documentation of the SmartMesh code

base. It is available in HTML and PDF format.

154

Bibliography

[1] D. Aı̈t-Ali-Yahia, G. Baruzzi, W. G. Habashi, M. Fortin, J. Dompierre, and

M.-G. Vallet. Anisotropic mesh adaptation: Towards user-independent, mesh-

independent and solver-independent CFD. Part II: Structured grids. Interna-

tional Journal for Numerical Methods in Fluids, 39(8):657–673, July 2002.

[2] F. Alauzet. Size gradation control of anisotropic meshes. Finite Elements in

Analysis and Design, 46:181–202, 2010.

[3] F. Alauzet and P. J. Frey. Estimateur d’erreur géométrique et métriques

anisotropes pour l’adaptation de maillage. Partie I: aspects théoriques. Technical

Report 4759, Institut National de Recherche en Informatique et en Automatique,

France, March 2003.

[4] F. Alauzet and P. J. Frey. Estimateur d’erreur géométrique et métriques

anisotropes pour l’adaptation de maillage. Partie II: exemples d’applications.

Technical Report 4789, Institut National de Recherche en Informatique et en

Automatique, France, March 2003.

[5] F. Alauzet and A. Loiselle. High-order sonic boom modeling based on adaptive

methods. Journal of Computational Physics, 229:561–593, 2010.

[6] F. Alauzet, P. J. Frey, P. L. George, and B. Mohammadi. 3D transient

fixed point mesh adaptation for time-dependent problems: Application

to CFD simulations. Journal of Computational Physics, 222(2):592–

155

623, 2007. ISSN 0021-9991. doi: DOI: 10.1016/j.jcp.2006.08.012. URL

http://www.sciencedirect.com/science/article/B6WHY-4M69P8W-1/2/a6bd4dd08ba6a8c

[7] Éric Béchet. Résolution d’un problème aux limites à frontières libres au moyen

d’un algorithme de remaillage adaptatif et anisotrope. PhD thesis, École Poly-

technique de Montréal, 2002.

[8] M.-O. Bristeau, R. Glowinski, J. Périaux, and H. Viviand, editors. Numeri-

cal Simulation of Compressible Navier-Stokes Flows. Notes in Numerical Fluid

Mechanics, Vol. 18, A GAMM-Workshop, Friedr. Vieweg & Sohn, Braun-

schweig/Wiesbaden, 1987.

[9] J. R. Cebral and R. Löhner. Flow visualization on unstructured grids using

geometrical cuts, vortex detection and shock surfaces. In 39th Aerospace Sciences

Meeting and Exhibit, number AIAA–2001–0915, Reno, NV, January 1995. AIAA.

[10] A. Cuhna, S. Canann, and S. Saigal. Automatic boundary sizing for 2D and

3D meshes. In AMD-Vol. 220 Trends in Unstructured Mesh Generation, pages

65–72, Evanston. IL, July 1997. Joint ASME/ASCE/SES Summer Meeting.

[11] J.-C. Cuillière. An adaptive method for the automatic triangulation of 3D para-

metric surfaces. Computer-Aided Design, 30(2):139–149, 1998.

[12] A. Cunha, S. A. Canann, and S. Saigal. Automatic boundary sizing for 2D and

3D meshes. In AMD-Vol. 220 Trends in Unstructured Mesh Generation, pages

65–72. ASME, July 1997.

[13] B. Delaunay. Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie

Matematicheskikh i Estestvennykh Nauk, 7:793–800, 1934.

[14] J. Dompierre, F. Guibault, J.-F. Dubé, H. Iepan, and T. C. Vu. Hybrid O-

mesh generation for hydraulic vane optimization. In 10th ISGG Conference on

Numerical Grid Generation, Forth, Crete, Greece, September 2007.

156

[15] K. Fontaine. Numerical methods for first and second derivatives of two-

dimensional discrete parametric curves. Technical report, Laurentian University,

Sudbury, ON, August 2010.

[16] V. François and J.-C. Cuillière. 3D automatic remeshing applied to model mod-

ification. Computer-Aided Design, 32(7):433–444, 2000.

[17] P. J. Frey and P.-L. George. Mesh Generation. Application to Finite Elements.

Hermès, Paris, 2000.

[18] P. J. Frey and L. Maréchal. Fast adaptive quadtree mesh generation. In Seventh

International Meshing Roundtable, pages 211–224, Dearborn, Michigan, October

1998. Sandia National Laboratories.

[19] C. Gruau. Génération de métriques pour adaptation anisotrope de maillages:

applications à la mise en forme des matériaux. PhD thesis Mécanique numérique,

ENSMP - CEMEF Centre de Mise en Forme des Matériaux, ENSMP, 2004.

[20] C. Gruau and T. Coupez. 3D tetrahedral, unstructured and anisotropic mesh

generation with adaptation to natural and multidomain metric. Computer Meth-

ods in Applied Mechanics and Engineering, 194(48–49):4951–76, 2005.

[21] F. Guibault, Y. Zhang, J. Dompierre, and T. C. Vu. Robust and automatic CAD-

based structured mesh generation for hydraulic turbine component optimization.

In Proceedings of the 23rd IAHR Symposium, Yokohama, Japan, October 2006.

[22] D. J. Jones. Test cases for inviscid flow field methods: Reference test cases and

contributions. Technical Report AR-211, AGARD, NATO, 1985.

[23] P. Labbé, J. Dompierre, M.-G. Vallet, F. Guibault, and J.-Y. Trépanier. A

universal measure of the conformity of a mesh with respect to an anisotropic

metric field. International Journal for Numerical Methods in Engineering, 61:

2675–2695, 2004.

157

[24] C. L. Lawson. Generation of a triangular grid with application to countour

plotting. Technical Report JPL–299, California Institute of Technology, 1972.

[25] C. K. Lee. Automatic adaptive mesh generation using metric advancing front

approach. Engineering Computations, 16(2):230–263, 1999.

[26] C. K. Lee. On curvature element-size control in metric surface mesh generation.

International Journal for Numerical Methods in Engineering, 50:787–807, 2001.

[27] F. Loiselle, A. Dervieux, and F. Alauzet. Fully anisotropic goal-oriented mesh

adaptation for 3D steady Euler equations. Journal of Computational Physics,

229:2866–2897, 2010.

[28] S. McKenzie, J. Dompierre, A. Turcotte, and E. Meng. On metric tensor repre-

sentation, intersection, and union. In 11th ISGG Conference on Numerical Grid

Generation, Montréal, QC, May 2009.

[29] B. Mohammadi. Fluid dynamics computation with NSC2KE, an user-guide,

release 1.0. Technical Report RT-0164, Institut National de Recherche en Infor-

matique et en Automatique, May 1994.

[30] T. H. Pulliam and J. T. Barton. Euler computation of AGARD working group

07 airfoil test cases. In AIAA 23rd Aerospace Sciences Meeting, number AIAA–

85–0018, Reno, NV, January 1985.

[31] M. Purdy. On metric tensor merging operations. Technical report, Laurentian

University, Sudbury, March 2010.

[32] É. Seveno. Génération automatique de maillages tridimensionnels isotropes par

une méthode frontale. PhD thesis, Université Pierre et Marie Curie, Paris VI,

March 1998.

[33] J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and Delau-

nay triangulator. In M. C. Lin and D. Manocha, editors, Applied Computational

158

Geometry: Towards Geometric Engineering, volume 1148 of Lecture Notes in

Computer Science, pages 203–222. Springer-Verlag, May 1996.

[34] Y. Sirois, J. Dompierre, M.-G. Vallet, and F. Guibault. Hybrid mesh smoothing

based on Riemannian metric non-conformity minimization. Finite Elements in

Analysis and Design, 46:47–60, January 2010.

[35] K.-F. Tchon, M. Khachan, F. Guibault, and R. Camarero. Three-dimensional

anisotropic geometric metrics based on local domain curvature and thickness.

Computer-Aided Design, 37(2):173–187, 2005.

[36] M.-G. Vallet. Génération de maillages éléments finis anisotropes et adaptatifs.

PhD thesis, Université Pierre et Marie Curie, Paris VI, France, 1992.

[37] G. P. Warren, W. K. Anderson, J. L. Thomas, and S. L. Krist. Grid conver-

gence for adaptive methods. In AIAA 29nd Aerospace Sciences Meeting, number

AIAA–91–1592–CP, Reno, NV, January 1991.

159

